医学部
基本情報
研究分野
1論文
73-
Journal of neuroengineering and rehabilitation 22(1) 42-42 2025年2月28日BACKGROUND: Robot-assisted gait training (RAGT) is an effective method for treating gait disorders in individuals with stroke. However, no previous studies have demonstrated the effectiveness of RAGT in individuals with acute stroke. This study aimed to investigate the effects of RAGT initiation within 1 week after onset on degree of gait independence in individuals with hemiparetic stroke. METHODS: This retrospective cohort study used propensity-score matching. Individuals admitted to Fujita Health University Hospital after stroke onset and underwent RAGT between March 2017 and June 2023 were enrolled. Ninety-two individuals were eligible and grouped into the acute (≤ 7 days after the onset) and subacute groups (8-90 days after onset). RAGT was conducted using Welwalk, primarily comprising a knee-ankle-foot orthosis type robot worn on one paralyzed lower extremity, with training sessions lasting approximately 40 min/day, occurring 3-7 days/week. The primary outcome was the gait under supervision within 90 days of onset, which was compared between groups using the log-rank test. RESULTS: After propensity-score matching, 36 individuals were included in the analysis, including 18 each in the acute and subacute groups; the participant demographics were not significantly different between the groups. RAGT was initiated at a median of 6 and 25 days after onset in the acute and subacute groups, respectively. The Kaplan-Meier curves after the log-rank test showed a significantly higher percentage and shorter median days to achieve gait under supervision in the acute group than in the subacute group. The cumulative incidence of gait under supervision events at 90 days after onset was 82.2% and 55.6% in the acute and the subacute groups, respectively. Half of the individuals achieved gait under supervision within 49 days and 75 days in the acute and subacute groups, respectively (p = 0.038). No significant differences were observed in the dose of rehabilitation program and gait training per day from onset to achieving gait under supervision. CONCLUSION: Initiation of RAGT within 1 week after stroke onset in individuals with hemiparesis may reduce the number of days required to achieve gait under supervision and increase the percentage of gait under supervision.
-
Journal of Clinical Medicine 13(21) 6616-6616 2024年11月4日Background/Objectives: Clinical trials have investigated the efficacy of rehabilitation robotics for various pathological conditions, but the overall impact on rehabilitation practice remains unclear. We comprehensively examined and analyzed systematic reviews (SRs) of randomized controlled trials (RCTs) investigating rehabilitative interventions with robotic devices. Methods: Four databases were searched using term combinations of keywords related to robotic devices, rehabilitation, and SRs. The SR meta-analyses were categorized into “convincing”, “highly suggestive”, “suggestive”, “weak”, or “non-significant” depending on evidence strength and validity. Results: Overall, 62 SRs of 341 RCTs involving 14,522 participants were identified. Stroke was most frequently reported (40 SRs), followed by spinal cord injury (eight SRs), multiple sclerosis (four SRs), cerebral palsy (four SRs), Parkinson’s disease (three SRs), and neurological disease (any disease causing limited upper- and lower-limb functioning; three SRs). Furthermore, 38, 21, and 3 SRs focused on lower-limb devices, upper-limb devices, and both upper- and lower-limb devices, respectively. Quantitative synthesis of robotic intervention effects was performed by 51 of 62 SRs. Robot-assisted training was effective for various outcome measures per disease. Meta-analyses offering suggestive evidence were limited to studies on stroke. Upper-limb devices were effective for motor control and activities of daily living, and lower-limb devices for walking independence in stroke. Conclusions: Robotic devices are useful for improving impairments and disabilities in several diseases. Further high-quality SRs including RCTs with large sample sizes and meta-analyses of these RCTs, particularly on non-stroke-related diseases, are required. Further research should also ascertain which type of robotic device is the most effective for improving each specific impairment or disability.
-
Journal of Rehabilitation Medicine - Clinical Communications 7 jrmcc40827-jrmcc40827 2024年9月3日Objective: To demonstrate the long-term efficacy of repeated botulinum toxin A injections into the same muscles for ameliorating lower limb spasticity and gait function.Design: Single-case studyPatient: A 36-year-old woman with right cerebral haemorrhage received her first botulinum toxin A injection 1,296 days after onset. The patient underwent 30 treatments over 12 years after the first injection to improve upper and lower limb spasticity and abnormal gait patterns. The mean duration between injections was 147 days.Methods: The Modified Ashworth Scale, passive range of motion, gait velocity, and degree of abnormal gait patterns during treadmill gait were evaluated pre-injection and at 2, 6, and 12 weeks after every injection.Results: The follow-up period showed no injection-related adverse events. Comfortable overground gait velocity gradually improved over 30 injections. The Modified Ashworth Scale and passive range of motion improved after each injection. Pre-injection values of the degree of pes varus, circumduction, hip hiking, and knee extensor thrust improved gradually. However, the degree of contralateral vaulting, excessive lateral shift of the trunk, and insufficient knee flexion did not improve after 30 injections.Conclusion: Repeated botulinum toxin A injections effectively improve abnormal gait patterns, even when a single injection cannot change these values.
-
Journal of neuroengineering and rehabilitation 21(1) 76-76 2024年5月14日BACKGROUND: Gait disorder remains a major challenge for individuals with stroke, affecting their quality of life and increasing the risk of secondary complications. Robot-assisted gait training (RAGT) has emerged as a promising approach for improving gait independence in individuals with stroke. This study aimed to evaluate the effect of RAGT in individuals with subacute hemiparetic stroke using a one-leg assisted gait robot called Welwalk WW-1000. METHODS: An assessor-blinded, multicenter randomized controlled trial was conducted in the convalescent rehabilitation wards of eight hospitals in Japan. Participants with first-ever hemiparetic stroke who could not walk at pre-intervention assessment were randomized to either the Welwalk group, which underwent RAGT with conventional physical therapy, or the control group, which underwent conventional physical therapy alone. Both groups received 80 min of physical therapy per day, 7 days per week, while the Welwalk group received 40 min of RAGT per day, 6 days per week, as part of their physical therapy. The primary outcome was gait independence, as assessed using the Functional Independence Measure Walk Score. RESULTS: A total of 91 participants were enrolled, 85 of whom completed the intervention. As a result, 91 participants, as a full analysis set, and 85, as a per-protocol set, were analyzed. The primary outcome, the cumulative incidence of gait-independent events, was not significantly different between the groups. Subgroup analysis revealed that the interaction between the intervention group and stroke type did not yield significant differences in either the full analysis or per-protocol set. However, although not statistically significant, a discernible trend toward improvement with Welwalk was observed in cases of cerebral infarction for the full analysis and per-protocol sets (HR 4.167 [95%CI 0.914-18.995], p = 0.065, HR 4.443 [95%CI 0.973-20.279], p = 0.054, respectively). CONCLUSIONS: The combination of RAGT using Welwalk and conventional physical therapy was not significantly more effective than conventional physical therapy alone in promoting gait independence in individuals with subacute hemiparetic stroke, although a trend toward earlier gait independence was observed in individuals with cerebral infarction. TRIAL REGISTRATION: This study was registered with the Japan Registry of Clinical Trials ( https://jrct.niph.go.jp ; jRCT 042180078) on March 3, 2019.
MISC
81-
日本整形外科学会雑誌 = The journal of the Japanese Orthopaedic Association 97(12) 1138-1141 2023年12月
-
Japanese Journal of Rehabilitation Medicine 56(Supplement) 2019年
-
Loco Cure 4(3) 246-251 2018年8月二足歩行するヒトは転倒しやすく、高齢者はさらにその傾向が顕著となる。高齢者では転倒恐怖がフレイルを助長し、さらに転倒リスクを高くする。このため転倒は積極的に予防するべき事象であるが、実際的には一般転倒と病院転倒を分けて考える必要がある。また高齢化社会における労働資源の不足を前提として、そこにロボットやITの適用が強く望まれている。バランス訓練ロボット、杖ロボットおよび転倒予防システムなど、現在、開発と実証が進んでいる技術を紹介し、それが地域および病院のどのフェーズで適用されるべきかを考察した。(著者抄録)
書籍等出版物
1講演・口頭発表等
12-
1st Symposium on Engineering, Automation and Accessibility 2013年
-
Medical and social rehabilitation of older people and invalids with bones and joints disorders 2013年
共同研究・競争的資金等の研究課題
3-
日本学術振興会 科学研究費助成事業 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 2016年4月 - 2019年3月
-
日本学術振興会 科学研究費助成事業 2013年4月 - 2016年3月