研究者業績
基本情報
- 所属
- 藤田医科大学 医学部 放射線診断学講座 臨床教授
- 学位
- 医学士(1994年3月 神戸大学医学部)博士(医学)(2000年9月 神戸大学大学院医学研究科)
- J-GLOBAL ID
- 201301059890537338
- researchmap会員ID
- 7000004230
研究分野
1経歴
7-
2025年1月 - 現在
-
2020年4月 - 2024年12月
-
2009年4月 - 2020年3月
-
2008年10月 - 2009年3月
-
2003年4月 - 2007年3月
学歴
2-
1995年4月 - 2000年9月
-
1988年4月 - 1994年3月
受賞
11論文
162-
Radiology 191740-191740 2020年5月26日 査読有りBackground Deep learning may help to improve computer-aided detection of volume (CADv) measurement of pulmonary nodules at chest CT. Purpose To determine the efficacy of a deep learning method for improving CADv for measuring the solid and ground-glass opacity (GGO) volumes of a nodule, doubling time (DT), and the change in volume at chest CT. Materials and Methods From January 2014 to December 2016, patients with pulmonary nodules at CT were retrospectively reviewed. CADv without and with a convolutional neural network (CNN) automatically determined total nodule volume change per day and DT. Area under the curves (AUCs) on a per-nodule basis and diagnostic accuracy on a per-patient basis were compared among all indexes from CADv with and without CNN for differentiating benign from malignant nodules. Results The CNN training set was 294 nodules in 217 patients, the validation set was 41 nodules in 32 validation patients, and the test set was 290 nodules in 188 patients. A total of 170 patients had 290 nodules (mean size ± standard deviation, 11 mm ± 5; range, 4-29 mm) diagnosed as 132 malignant nodules and 158 benign nodules. There were 132 solid nodules (46%), 106 part-solid nodules (36%), and 52 ground-glass nodules (18%). The test set results showed that the diagnostic performance of the CNN with CADv for total nodule volume change per day was larger than DT of CADv with CNN (AUC, 0.94 [95% confidence interval {CI}: 0.90, 0.96] vs 0.67 [95% CI: 0.60, 0.74]; P < .001) and CADv without CNN (total nodule volume change per day: AUC, 0.69 [95% CI: 0.62, 0.75]; P < .001; DT: AUC, 0.58 [95% CI: 0.51, 0.65]; P < .001). The accuracy of total nodule volume change per day of CADv with CNN was significantly higher than that of CADv without CNN (P < .001) and DT of both methods (P < .001). Conclusion Convolutional neural network is useful for improving accuracy of computer-aided detection of volume measurement and nodule differentiation capability at CT for patients with pulmonary nodules. © RSNA, 2020 Online supplemental material is available for this article.
-
Acta radiologica (Stockholm, Sweden : 1987) 60(12) 1619-1628 2019年12月
-
European journal of radiology 115 22-30 2019年6月PURPOSE: To prospectively compare the capability of dynamic first-pass contrast-enhanced (CE) perfusion MR imaging with ultra-short TE and area-detector CT (ADCT), analyzed with the same mathematical methods, and that of FDG-PET/CT for diagnosis and management of solitary pulmonary nodules (SPNs). METHODS AND MATERIALS: Our institutional review board approved this study and written informed consent was obtained from all subjects. A total 57 consecutive patients with 71 nodules prospectively underwent dynamic CE-perfusion ADCT and MR imaging with ultra-short TE, FDG-PET/CT, as well as microbacterial and/or pathological examinations. The nodules were classified into malignant nodules (n = 45) and benign nodules (n = 26). Pulmonary arterial, systemic arterial and total perfusions were determined by means of dual-input maximum slope models on ADCT and MR imaging and maximum values of standard uptake values (SUVmax) on PET/CT. Receiver operating characteristic (ROC) analysis was performed for each index, and sensitivity, specificity and accuracy were compared by McNemar's test. RESULTS: Areas under the curve (Azs) of total perfusion on ADCT (Az = 0.89) and MR imaging (Az = 0.88) were significantly larger than those of systemic arterial perfusion and MR imaging (p<0.05). Accuracy of total perfusion on ADCT (87.3% [62/71]) and MR imaging (87.3% [62/71]) was significantly higher than that of systemic arterial perfusion for both methods (77.5% [55/71] p = 0.02) and SUVmax (78.9% [56/71], p = 0.03). CONCLUSION: Dynamic CE-perfusion MR imaging with ultra-short TE and ADCT and have similar potential capabilities, and are superior to FDG-PET/CT in this setting.
-
AJR Am J Roentgenol 212(2) 311-319 2019年2月 査読有り
-
Jpn J Radiol 37(5) 399-411 2019年2月 査読有り
-
AJR Am J Roentgenol 212(1) 57-66 2019年1月 査読有り
-
AJR Am J Roentgenol 211(1) 185-192 2018年7月 査読有り
-
AJR. American journal of roentgenology 210(6) 1216-1225 2018年6月OBJECTIVE: Ultrashort TE (UTE) MRI has been shown to deliver high-resolution images comparable to CT images. Here we evaluate the potential of UTE-MRI for precise lung nodule characterization. SUBJECTS AND METHODS: Fifty-one patients (mean [± SD] age, 68.7 ± 10.8 years) with 119 nodules or masses (mean size, 17.4 ± 16.3 mm; range, 4-88 mm) prospectively underwent CT (1-mm slice thickness) and UTE-MRI (TE, 192 μs; 1 mm3 resolution). Two radiologists assessed nodule dimensions and morphologic features (i.e., attenuation, margins, and internal lucencies), in consensus for CT and in a blinded fashion for UTE-MRI. Sensitivity, specificity, and kappa statistics were calculated in reference to CT. RESULTS: Readers 1 and 2 underestimated the nodules' long axial diameter with UTEMRI by 1.2 ± 3.4 and 2.1 ± 4.2 mm, respectively (p < 0.001). The sensitivity and specificity of UTE-MRI for subsolid attenuation were 95.9% and 70.3%, respectively, for reader 1 and 97.1% and 71.4%, respectively, for reader 2 (κ = 0.71 and 0.68). With regard to margin characteristics, for lobulation, sensitivity was 70.6% and 54.9%, and specificity was 93.2% and 96.3% for readers 1 and 2, respectively; for spiculation, sensitivity was 61.5% and 48.0%, and specificity was 95.2% and 95.0%; and for pleural tags, sensitivity was 87.0% and 73.3%, and specificity was 93.8% and 95.0%. Finally, for internal lucencies, sensitivity was 72.7% and 61.3%, and specificity was 96.1% and 97.3% for readers 1 and 2, respectively (κ = 0.64-0.81 for reader 1 and 0.48-0.72 for reader 2). Interreader agreement for attenuation, margin characteristics, and lucencies was substantial to almost perfect with few exceptions (κ = 0.51-0.90). CONCLUSION: UTE-MRI systematically underestimated dimension measurements by approximately 1-2 mm but otherwise showed high diagnostic properties and interreader agreement, yet unprecedented by MRI, for nodule morphologic assessment.
-
Magnetic Resonance Imaging 47 89-96 2018年4月1日 査読有り
-
Journal of Magnetic Resonance Imaging 47(4) 1013-1021 2018年4月1日 査読有り
-
American Journal of Roentgenology 210(2) W45-W53 2018年2月1日 査読有り
-
Medical Radiology (9783319426167) 479-505 2018年
-
JOURNAL OF MAGNETIC RESONANCE IMAGING 46(6) 1707-1717 2017年12月 査読有り
-
AMERICAN JOURNAL OF ROENTGENOLOGY 209(5) W253-W262 2017年11月 査読有り
-
European Radiology 27(7) 2978-2988 2017年7月1日 査読有り
-
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY 22(5) 407-421 2016年9月 査読有り
-
EUROPEAN JOURNAL OF RADIOLOGY 85(8) 1375-1382 2016年8月 査読有り
-
JOURNAL OF THORACIC IMAGING 31(4) 215-227 2016年7月 査読有り
-
AMERICAN JOURNAL OF ROENTGENOLOGY 206(6) 1184-1192 2016年6月 査読有り
-
RADIOLOGY 279(2) 578-589 2016年5月 査読有り
-
JOURNAL OF MAGNETIC RESONANCE IMAGING 43(2) 512-532 2016年2月 査読有り
-
European Journal of Radiology 85(2) 352-359 2016年2月1日 査読有り
-
EUROPEAN JOURNAL OF RADIOLOGY 85(1) 164-175 2016年1月 査読有り
-
EUROPEAN JOURNAL OF RADIOLOGY 85(1) 176-186 2016年1月 査読有り
-
CURRENT RHEUMATOLOGY REPORTS 17(12) 69 2015年12月 査読有り
-
EUROPEAN JOURNAL OF RADIOLOGY 84(11) 2321-2331 2015年11月 査読有り
-
JOURNAL OF MAGNETIC RESONANCE IMAGING 42(2) 340-353 2015年8月 査読有り
-
EUROPEAN JOURNAL OF RADIOLOGY 84(3) 509-515 2015年3月 査読有り
-
EUROPEAN JOURNAL OF RADIOLOGY 83(12) 2268-2276 2014年12月 査読有り
-
RADIOLOGY 273(3) 907-916 2014年12月 査読有り
-
BRITISH JOURNAL OF RADIOLOGY 87(1038) 20130307 2014年6月 査読有り
MISC
73-
CT検診 26(1) 47-47 2019年2月
-
Eur J Radiol 111 93-103 2019年2月 査読有り
-
Radiologic Clinics of North America 56(3) 437-469 2018年5月1日 査読有り
書籍等出版物
10講演・口頭発表等
396-
第26回日本CT検診学会学術集会 2019年2月 日本CT検診学会
-
31st Annual Meeting of European Congress of Radiology (ECR 2019) 2019年2月 European Society of Radioogy
-
31st Annual Meeting of European Congress of Radiology (ECR 2019) 2019年2月 European Society of Radioogy
-
31st Annual Meeting of European Congress of Radiology (ECR 2019) 2019年2月 European Society of Radioogy
-
31st Annual Meeting of European Congress of Radiology (ECR 2019) 2019年2月 European Society of Radioogy
共同研究・競争的資金等の研究課題
11-
日本学術振興会 科学研究費助成事業 2025年4月 - 2028年3月
-
学術研究助成基金助成金/基盤研究(C) 2018年4月 - 2021年3月
-
学術研究助成基金助成金/基盤研究(C) 2015年4月 - 2018年3月
-
学術研究助成基金助成金/基盤研究(C) 2014年4月 - 2017年3月
-
科学研究費補助金/基盤研究(C) 2012年4月 - 2015年3月