研究者業績

藪内 光

ヤブウチ ヒカル  (Hikaru Yabuuchi)

基本情報

所属
藤田医科大学 研究支援推進本部 産学連携推進センター 教授
学位
博士(薬学)

J-GLOBAL ID
201301006243392828
researchmap会員ID
7000004104

論文

 45
  • Naoko Ikeo, Ryota Nakamura, Kosuke Naka, Toshiaki Hashimoto, Toshihiko Yoshida, Takeshi Urade, Kenji Fukushima, Hikaru Yabuuchi, Takumi Fukumoto, Yonson Ku, Toshiji Mukai
    Acta Biomaterialia 29 468-476 2016年1月  査読有り
    To develop a biodegradable clip, the equivalent plastic strain distribution during occlusion was evaluated by the finite element analysis (FEA) using the material data of pure Mg. Since the PEA suggested that a maximum plastic strain of 0.40 is required to allow the Mg clips, the alloying of magnesium with essential elements and the control of microstructure by hot extrusion and annealing were conducted. Mechanical characterization revealed that the Mg-Zn-Ca alloy obtained by double extrusion followed by annealing at 673 K for 2 h possessed a fracture strain over 0.40. The biocompatibility of the alloy was confirmed here by investigating its degradation behavior and the response of extraperitoneal tissue around the Mg-Zn-Ca alloy. Small gas cavity due to degradation was observed following implantation of the developed Mg-Zn-Ca clip by in vivo micro-CT. Histological analysis, minimal observed inflammation, and an only small decrease in the volume of the implanted Mg-Zn-Ca clip confirmed its excellent biocompatibility. FEA using the material data for ductile Mg-Zn-Ca also showed that the clip could occlude the simulated vessel without fracture. In addition, the Mg-Zn-Ca alloy clip successfully occluded the renal vein. Microstructural observations using electron backscattering diffraction confirmed that dynamic recovery occurred during the later stage of plastic deformation of the ductile Mg-Zn-Ca alloy. These results suggest that the developed Mg-Zn-Ca alloy is a suitable material for biodegradable clips. Statement of significance Since conventional magnesium alloys have not exhibited significant ductility for applying the occlusion of vessels, the alloying of magnesium with essential elements and the control of microstructure by hot extrusion and annealing were conducted. Mechanical characterization revealed that the Mg-Zn-Ca alloy obtained by double extrusion followed by annealing at 673 K for 2 h possessed a fracture strain over 0.40. The biocompatibility of the alloy was confirmed by investigating its degradation behavior and the response of extraperitoneal tissue around the Mg-Zn-Ca alloy. Finite element analysis using the material data for the ductile Mg-Zn-Ca alloy also showed that the clip could occlude the simulated vessel without fracture. In addition, the Mg-Zn-Ca alloy clip successfully occluded the renal vein. Microstructural observations using electron backscattering diffraction confirmed that dynamic recovery occurred during the later stage of plastic deformation of the ductile Mg-Zn-Ca alloy. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  • Hajime Fukuda, Rikiya Ohashi, Noriko Ohashi, Hikaru Yabuuchi, Ikumi Tamai
    Drug metabolism and disposition: the biological fate of chemicals 38(9) 1505-13 2010年9月  査読有り
    N-[6-[2-[(5-Bromo-2-pyrimidinyl)oxy]ethoxy]-5-(4-methylphenyl)-4-pyrimidinyl]-4-(2-hydroxy-1,1-dimethylethyl) benzenesulfonamide sodium salt (TA-0201) carboxylic acid form (TA-0201CA) is the primary and pharmacologically active metabolite of TA-0201, which is an orally active nonpeptide antagonist for endothelin receptors. A major elimination route of TA-0201CA in rats was biliary excretion. The aim of this study was to clarify the transporters responsible for the hepatobiliary transport of TA-0201CA by in vivo pharmacokinetic study and in vitro study using sandwich-cultured rat hepatocytes (SCRH) from normal rats [Sprague-Dawley rats (SDR)] and Eisai hyperbilirubinemic rats (EHBR). After intravenous administration, TA-0201CA was extensively excreted into bile with a high biliary clearance in SDR. In contrast, the biliary clearance in EHBR was lower than that in SDR. These results indicated that multidrug resistance-associated protein 2 (Mrp2) was partly involved in the biliary excretion of TA-0201CA. In SCRH, the hepatic uptake of TA-0201CA was significantly decreased by the presence of organic anion-transporting polypeptide (Oatp) substrates/inhibitors and a Na(+)-free condition, which is a driving force of the Na(+)-taurocholate cotransporting polypeptide (Ntcp). The canalicular secretion of TA-0201CA was inhibited by the bile salt export pump (Bsep) inhibitor glibenclamide and by the Mrp2 inhibitor 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK-571) in SCRH from SDR and EHBR. These results suggested that TA-0201CA was transported into hepatocytes via Oatps and Ntcp and excreted into bile via Mrp2 and Bsep in rats.
  • Kana Yamaguchi, Tsuyoshi Murai, Hikaru Yabuuchi, Shu-Ping Hui, Takao Kurosawa
    Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 130(5) 755-761 2010年5月  査読有り
    Monovalent bile acids, such as taurine- and glycine-conjugated bile acids, are excreted into bile by bile salt export pumps (BSEP, ABCB11). Human BSEP (hBSEP) is physiologically important because it was identified as the gene responsible for the genetic disease: progressive familial intrahepatic cholestasis type 2 (PFIC-2). The evaluation of the inhibitory effect of hBSEP transport activity provides significant information for predicting toxic potential in the early phase of drug development. The role and function of hBSEP have been investigated by the examination of the ATP-dependent transport of radioactive isotopically (RI)-labeled bile acid such as a tritium labeled taurocholic acid, in membrane vesicles obtained from hBSEP-expressing cells. The chemiluminescence detection method using 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) had been developed for a simple analysis of bile acids in human biological fluids. This method is extremely sensitive and it may be applicable for the measurements of bile acid transport activities by hBSEP vesicles without using RI-labeled bile acid. The present paper deals with an application of the chemiluminescence detection method using 3alpha-HSD with enzyme cycling method to the measurement of ATP-dependent transport activities of taurocholic acid (T-CA) in membrane vesicles obtained from hBSEP-expressing Sf9 cells. Calibration curves for T-CA was linear over the range from 10 to 400 pmol/ml. The values of the kinetic parameters for hBSEP vesicles obtained by the chemiluminescence detection method were comparable with the values of that obtained by liquid chromatography-mass spectrometry method. This assay method was highly useful for the measurements of bile acid transport activities.
  • Takashi Kuromori, Takaaki Miyaji, Hikaru Yabuuchi, Hidetada Shimizu, Eriko Sugimoto, Asako Kamiya, Yoshinori Moriyama, Kazuo Shinozaki
    Proceedings of the National Academy of Sciences of the United States of America 107(5) 2361-2366 2010年2月2日  査読有り
    Abscisic acid (ABA) is one of the most important phytohormones involved in abiotic stress responses, seed maturation, germination, and senescence. ABA is predominantly produced in vascular tissues and exerts hormonal responses in various cells, including guard cells. Although ABA responses require extrusion of ABA from ABA-producing cells in an intercellular ABA signaling pathway, the transport mechanisms of ABA through the plasma membrane remain unknown. Here we isolated an ATP-binding cassette (ABC) transporter gene, AtABCG25, from Arabidopsis by genetically screening for ABA sensitivity. AtABCG25 was expressed mainly in vascular tissues. The fluorescent protein-fused AtABCG25 was localized at the plasma membrane in plant cells. In membrane vesicles derived from AtABCG25-expressing insect cells, AtABCG25 exhibited ATP-dependent ABA transport. The AtABCG25-overexpressing plants showed higher leaf temperatures, implying an influence on stomatal regulation. These results strongly suggest that AtABCG25 is an exporter of ABA and is involved in the intercellular ABA signaling pathway. The presence of the ABA transport mechanism sheds light on the active control of multicellular ABA responses to environmental stresses among plant cells.
  • Kana Yamaguchi, Tsuyoshi Murai, Hikaru Yabuuchi, Takao Kurosawa
    Analytical sciences : the international journal of the Japan Society for Analytical Chemistry 26(3) 317-323 2010年  査読有り
    A method has been developed for the measurement of transport activities in membrane vesicles obtained from human multidrug resistance-associated protein 3-expressing Sf9 cells for 1beta-hydroxy-, 6alpha-hydroxy- and unsaturated bile acids by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Calibration curves for the bile acids were linear over the range of 10 to 2000 pmol/mL, and the detection limit was less than 2 pmol/mL for all bile acids using selected reaction monitoring analysis. The method was applied to measurements of adenosine triphosphate-dependent transport activities of the membrane vesicles for the above-mentioned hydroxylated and unsaturated bile acids. The present study demonstrated that the human multidrug resistance-associated protein 3 vesicles accepted 1beta-, 6alpha-hydroxylated and unsaturated bile acids along with common bile acids, such as glycocholic acid and taurolithocholic acid 3-sulfate. The developed method is useful for measurements of bile acid transport activities.
  • Kana Yamaguchi, Tsuyoshi Murai, Hikaru Yabuuchi, Shu-Ping Hui, Takao Kurosawa
    Drug metabolism and pharmacokinetics 25(2) 214-219 2010年  査読有り
    A novel fluorescent bile acid derivative, 4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole- conjugated bile acid was synthesized as a probe to develop a rapid screening method for function analysis of bile salt export pump (BSEP, ABCB 11). The transport properties of the synthetic fluorescent bile acid derivative in membrane vesicles obtained from hBSEP-expressing Sf9 cells were examined using the liquid chromatography-electrospray ionization-mass spectrometry method. The Michaelis-Menten constant and maximum uptake rate for the synthetic fluorescent bile acid derivative by hBSEP were 23.1+/-1.6 microM and 623.2+/-22.4 pmol/min/mg protein, respectively. These kinetic parameters of the synthetic fluorescent bile acid derivative were comparable with those of an unlabeled bile acid, taurocholic acid. Moreover, we examined inhibitory effects of various drugs on hBSEP-mediated uptake of the fluorescent bile acid derivative using a fluorescence detection method. The relative uptake activities (percent of control) for the fluorescent bile acid derivative in the presence of an inhibitor were in accordance with previous findings using (3)H-labeled taurocholic acid. Our results suggest that the synthetic fluorescent bile acid derivative may be useful for evaluation of the inhibitory effects of various drugs on hBSEP-mediated uptake.
  • Takafumi Toyohara, Takehiro Suzuki, Ryo Morimoto, Yasutoshi Akiyama, Tomokazu Souma, Hiromi O Shiwaku, Yoichi Takeuchi, Eikan Mishima, Michiaki Abe, Masayuki Tanemoto, Satohiro Masuda, Hiroaki Kawano, Koji Maemura, Masaaki Nakayama, Hiroshi Sato, Tsuyoshi Mikkaichi, Hiroaki Yamaguchi, Shigefumi Fukui, Yoshihiro Fukumoto, Hiroaki Shimokawa, Ken-ichi Inui, Tetsuya Terasaki, Junichi Goto, Sadayoshi Ito, Takanori Hishinuma, Isabelle Rubera, Michel Tauc, Yoshiaki Fujii-Kuriyama, Hikaru Yabuuchi, Yoshinori Moriyama, Tomoyoshi Soga, Takaaki Abe
    Journal of the American Society of Nephrology : JASN 20(12) 2546-2555 2009年12月  査読有り
    Hypertension in patients with chronic kidney disease (CKD) strongly associates with cardiovascular events. Among patients with CKD, reducing the accumulation of uremic toxins may protect against the development of hypertension and progression of renal damage, but there are no established therapies to accomplish this. Here, overexpression of human kidney-specific organic anion transporter SLCO4C1 in rat kidney reduced hypertension, cardiomegaly, and inflammation in the setting of renal failure. In addition, SLCO4C1 overexpression decreased plasma levels of the uremic toxins guanidino succinate, asymmetric dimethylarginine, and the newly identified trans-aconitate. We found that xenobiotic responsive element core motifs regulate SLCO4C1 transcription, and various statins, which act as inducers of nuclear aryl hydrocarbon receptors, upregulate SLCO4C1 transcription. Pravastatin, which is cardioprotective, increased the clearance of asymmetric dimethylarginine and trans-aconitate in renal failure. These data suggest that drugs that upregulate SLCO4C1 may have therapeutic potential for patients with CKD.
  • Kana Yamaguchi, Tsuyoshi Murai, Hikaru Yabuuchi, Takao Kurosawa
    Analytical sciences : the international journal of the Japan Society for Analytical Chemistry 25(9) 1155-1158 2009年9月  査読有り
    The high performance liquid chromatography-electrospray ionization-mass spectrometry method has been applied to the measurement of bile acid transport activities in membrane vesicles obtained from a human bile salt export pump expressing Sf9 cells. The amounts of bile acids transported using the human bile salt export pump expressing Sf9 cells were determined using liquid chromatography-electrospray ionization-mass spectrometry method and the values of the kinetic parameters were determined to be comparable with those obtained using radioisotope-labeled substrates. The developed method was highly useful for the measurements of bile acid transport activities.
  • Takuo Ogihara, Takashi Kano, Tamae Wagatsuma, Sho Wada, Hikaru Yabuuchi, Shigeki Emonoto, Yoshiyuki Shirasaka, Kaori Morimoto, Shoko Kobayashi, Ikumi Tamai
    DRUG METABOLISM REVIEWS 41 114-115 2009年8月  査読有り
  • Takuo Ogihara, Takashi Kano, Tamae Wagatsuma, Sho Wada, Hikaru Yabuuchi, Shigeki Enomoto, Kaori Morimoto, Yoshiyuki Shirasaka, Shoko Kobayashi, Ikumi Tamai
    Drug metabolism and disposition: the biological fate of chemicals 37(8) 1676-1681 2009年8月  査読有り
    Oseltamivir, an ester-type prodrug of the neuraminidase inhibitor [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), has been developed for the treatment of A and B strains of the influenza virus but has neuropsychiatric and other side effects. In this study, we characterized the transport across intestinal epithelial cells and the absorption of oseltamivir in rats. Uptake by Caco-2 cells (human carcinoma cell line) and HeLa cells transfected with peptide transporter 1 (HeLa/PEPT1) was time- and temperature-dependent and was inhibited by typical PEPT1 inhibitors such as glycyl-sarcosine (Gly-Sar). The uptake by Caco-2 cells and HeLa/PEPT1 was saturable, with similar K(m) values. Oseltamivir absorption in adult rats was greatly reduced by simultaneous administration of milk, casein, or Gly-Sar. Furthermore, the plasma and brain concentrations of oseltamivir were higher in fasting than in nonfasting rats after oral administration. These results suggest that oseltamivir is a substrate of PEPT1 and that PEPT1 is involved in its intestinal absorption.
  • Masa Yasunaga, Masaaki Takemura, Kyoko Fujita, Hikaru Yabuuchi, Morimasa Wada
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences 35(4) 326-334 2008年11月15日  査読有り
    The monkey is an important experimental model in the pharmacological evaluation of new drugs. We isolated monkey multidrug resistance-associated protein 2 (MRP2) cDNA to examine expression profiles among various tissues and measured ATPase activity to assess substrate specificity. The amino acid sequence encoded by monkey MRP2 cDNA was very similar (96% identity) to the reported human MRP2 cDNA (GenBank accession no. NM_000392). The tissue distribution of MRP2 in monkeys was partially different from that in humans. We found relatively high expression of MRP2 in the monkey kidney and small intestine using Northern blotting. Substrate specificity was compared between human and monkey MRP2. The affinity of 17beta-estradiol 17-(beta-d-glucuronide), methotrexate, vinblastine, and probenecid to monkey MRP2 was higher than that to human MRP2. Functional and expression differences between human and monkey MRP2 should be incorporated into the evaluation of candidate drugs.
  • Hikaru Yabuuchi, Kenji Tanaka, Miyako Maeda, Masaaki Takemura, Masaki Oka, Rikiya Ohashi, Ikumi Tamai
    Biopharmaceutics & drug disposition 29(8) 441-448 2008年11月  査読有り
    The dog bile salt export pump (BSEP; ABCB11) was cloned and expressed in a Sf9 insect cell system. The deduced amino acid sequence encodes a 1325-amino-acid protein, which shows 89.4% and 80.2% homology with human BSEP and rat Bsep, respectively. The transcript of the dog Bsep gene was detected at a high level in liver, but not other tissues, by quantitative RT-PCR. The BSEP-expressing membrane vesicles isolated from Sf9 cells exhibited saturable uptake of [(3)H]taurocholic acid with Michaelis constants (K(m)) of 33.7, 22.2 and 19.9 microM for the dog, rat and human transporters, respectively. The uptake of [(3)H]taurocholic acid by all three transporters was significantly inhibited by troglitazone, glibenclamide, and other several inhibitors, while pravastatin inhibited dog Bsep and human BSEP, but not rat Bsep at 100 microM. The IC(50) of troglitazone for dog Bsep, human BSEP, and rat Bsep were 32, 20, and 60 microM, and those of pravastatin were 441, 240 and >1,000 microM, respectively. In conclusion, while dog Bsep shows similar ATP-dependent bile acid transport characteristics to human BSEP and rat Bsep, there is a species difference in affinity for drugs such as pravastatin and troglitazone.
  • Toshimichi Nakamura, Kenji Yoshida, Hikaru Yabuuchi, Tomoji Maeda, Ikumi Tamai
    Biological & pharmaceutical bulletin 31(8) 1580-1584 2008年8月  査読有り
    It has been reported that organic cation/carnitine transporter 1 (OCTN1) is associated with rheumatoid arthritis and Crohn's disease. Additionally, we reported that OCTN1 is expressed in hematopoietic cells, and is associated with proliferation and differentiation of erythroid cells. However, physiological role of OCTN1 is still unclear. Ergothioneine, an anti-oxidant, was recently reported to be a good substrate of human OCTN1. However, the transport characteristics of ergothioneine in rat remains to be clarified. The present study, is to further investigate the role of rat Octn1 on transport of ergothioneine in rat Octn1 transfected cells and natively expressing cell line PC12 derived from rat adrenal pheochromocytoma. [(3)H]Ergothioneine uptake by rat Octn1 stably transfected HEK293 cells was saturable, sodium dependent with 1 : 1 stoichiometry of ergothioneine, and pH dependent. Since ergothioneine was reported to presumably play a protective role against oxidative stress-induced apoptosis in PC12 cells, its transport in this cell line was investigated. The expression of rat Octn1 and a saturable and Na(+)-dependent transport of ergothioneine were observed in PC12 cells, suggesting that ergothioneine transport in this cell line may be mediated by rat Octn1. These findings suggested that rat Octn1 may act as a survival factor by taking up ergothioneine to suppress oxidative stress in this cell line. In conclusion, functional characteristics of ergothioneine transport by rat Octn1 is similar to that of human OCTN1 and it is suggested that rat Octn1 is important by transporting anti-oxidant ergothioneine in PC12 cells, though its role in vivo is to be investigated.
  • Yukio Kato, Seiko Takahara, Sayaka Kato, Yoshiyuki Kubo, Yoshimichi Sai, Ikumi Tamai, Hikaru Yabuuchi, Akira Tsuji
    Drug metabolism and disposition: the biological fate of chemicals 36(6) 1088-1096 2008年6月  査読有り
    In the present study, we attempted to identify the membrane permeation process(es) primarily involved in the molecular-weight-dependent biliary excretion of beta-lactam antibiotics. A search of the literature indicated that the molecular weight threshold operates mainly in the transport process across bile canalicular membranes. We confirmed that biliary clearance of the model biliary-excretion-type cephalosporin cefoperazone was reduced to 10% of the control in Eisai hyperbilirubinemic rats, which are genetically deficient in multidrug resistance-associated protein (Mrp) 2, indicating that Mrp2 plays a major role as an efflux transporter on the canalicular membranes. ATP-dependent uptake of several cephalosporins including cefoperazone, cefbuperazone, cefpiramide, and ceftriaxone, all of which are mainly excreted into bile, was confirmed in membrane vesicles from Sf9 cells transfected with rat Mrp2. Both the inhibitory potency of the cephalosporins for Mrp2-mediated transport and the uptake of cephalosporins by Mrp2-expressing vesicles were molecular weight-dependent, suggesting that Mrp2 is one of the major transporters involved in molecular weight-dependent biliary excretion. An uptake study in membrane vesicles of Sf9 cells transfected with breast cancer resistance protein (Bcrp) revealed that Bcrp accepts cefoperazone, cefbuperazone, cefpiramide, cefotetan, ceftriaxone, cefotiam, cefamandole, and cefazolin as substrates, and Bcrp-mediated transport was also molecular weight-dependent, suggesting that Bcrp also contributes to molecular weight-dependent biliary excretion of beta-lactam antibiotics in rats.
  • Katsumasa Otake, Hiroshi Suzuki, Ryunosuke Higashi, Hikaru Yabuuchi, Makoto Haga, Tomoji Maeda, Thomas J Cook, Ikumi Tamai
    Journal of pharmaceutical sciences 97(5) 1821-1830 2008年5月  査読有り
    Intestinal membrane permeability is an important factor affecting the bioavailability of drugs. As a strategy to improve membrane permeability, membrane transporters are useful targets since essential nutrients are absorbed efficiently via specific transporters. For example, there are reports that intestinal hexose transporters could be used as a tool to improve permeability; however, there has been no direct evidence that the transporter protein, sodium/glucose cotransporter 1 (SGLT1), is involved in the transport of hexose analogs. Accordingly, we examined directly whether the intestinal membrane permeability of hexose analogs can be improved by utilizing SGLT1. Three hexose-quinoline derivatives were synthesized and their interactions with SGLT1 were evaluated. Among the three derivatives, the glucose-quinoline molecule exhibited an inhibitory effect on D-glucose uptake by both rat intestinal brush-border membrane vesicles (BBMVs) and Xenopus oocytes expressing SGLT1. In addition, significant uptake of the glucose-quinoline derivative by Xenopus oocytes expressing SGLT1 was observed by both an electrophysiological assay and direct measurement of the uptake of the compound, while the galactose-quinoline derivative did not show significant uptake via SGLT1. Thus, it was directly demonstrated that SGLT1 could be used as a tool for the improvement of intestinal membrane permeability of drugs by modification to the glucose analogs.
  • Masanobu Sato, Takashi Iwanaga, Hideaki Mamada, Toshio Ogihara, Hikaru Yabuuchi, Tomoji Maeda, Ikumi Tamai
    Pharmaceutical research 25(3) 639-646 2008年3月  査読有り
    PURPOSE: To examine the mechanisms of the alteration of serum uric acid level by angiotensin II receptor blockers (ARBs), the effects of ARBs on renal uric acid transporters, including OAT1, OAT3, OAT4, and MRP4, were evaluated. MATERIALS AND METHODS: Uptakes of uric acid by OAT1-expressing Flp293 cells, by Xenopus oocytes expressing OAT3 or OAT4, and by membrane vesicles from Sf9 cells expressing MRP4 were evaluated in the presence or absence of ARBs. RESULTS: All ARBs inhibited uptake of uric acid or estrone-3-sulfate by OAT1, OAT3 and OAT4 in concentration dependent manners. Among them, the IC50 values of valsartan, olmesartan and pratosartan for OAT3 were comparable to clinically observed unbound maximum plasma concentration of ARBs. Candesartan, losartan, and telmisartan inhibited ATP-dependent uptake of uric acid by MRP4 at 10 microM. The IC50 value of losartan for MRP4 was comparable to the estimated kidney tissue concentration of losartan. No ARBs showed trans-stimulatory effects on the uptake of estrone-3-sulfate by OAT4. CONCLUSION: Valsartan, olmesartan, and pratosartan could inhibit the OAT3-mediated uric acid secretion in clinical situations. Furthermore losartan could inhibit ATP-dependent uric acid secretion by MRP4. These effects may explain partially the alteration of serum uric acid level by ARBs.
  • Masanori Nakakariya, Taiki Shimada, Masanori Irokawa, Hiroyuki Koibuchi, Takashi Iwanaga, Hikaru Yabuuchi, Tomoji Maeda, Ikumi Tamai
    Pharmaceutical research 25(3) 578-585 2008年3月  査読有り
    PURPOSE: To identify the rat hepatic basolateral transporters involved in the hepatic uptake of beta-lactam antibiotics using nafcillin as a model beta-lactam antibiotic that undergoes extensive biliary excretion. MATERIALS AND METHODS: Uptake by isolated rat hepatocytes and Xenopus laevis oocytes expressing organic anion transporting peptides (Oatp1, 2, and 4) and organic anion transporter (OAT2) was evaluated. RESULTS: Nafcillin uptake by isolated rat hepatocytes was saturable with the Km of 210 microM and was significantly inhibited by anionic compounds (estrone-3-sulfate and sulfobromophthalein), but not by cationic compounds (tetraethylammonium and 1-methyl-4-phenylpyridinium). In an in vitro uptake study by Xenopus oocytes expressing hepatic basolateral membrane transporters, nafcillin was transported by multiple Oatps with Km values of 4120 microM (Oatp1/Oatp1a1), 198 microM (Oatp2/Oatp1a4), and 1,570 microM (Oatp4/Oatp1b2), though it was not transported by hOAT2. Comparison of affinity and analysis by the relative activity factor method indicated that Oatp2 is the predominant contributor to the hepatic uptake of nafcillin. Cefadroxil, cefazolin, cefmetazole, cefoperazone, cefsulodin, and cephalexin, though not cefotaxime or ceftriaxone, were also substrates of Oatp2. CONCLUSION: These findings suggest that Oatp2 plays a key role in the hepatic uptake of nafcillin and most other beta-lactam antibiotics in rats.
  • Kaori Morimoto, Yoshiyuki Shirasaka, Shigeki Enomoto, Hikaru Yabuuchi, Ikumi Tamai, Takuo Ogihara
    DRUG METABOLISM REVIEWS 40 212-213 2008年  査読有り
  • Mika Sugiura, Masato Nagaoka, Hikaru Yabuuchi, Toshihiro Akaike
    Biochemical and biophysical research communications 360(4) 741-745 2007年9月7日  査読有り
    Embryonic stem (ES) cell differentiation is regulated by cytokines and growth factors, as well as small-compound chemicals incorporated into cells by transporter proteins. Little is known regarding the effect of transporters on ES cell differentiation. This study focused on the effect of transporters during the neural-lineage differentiation of ES cells. Among the 27 types of SLC family transporters, MCT8 expression was coincident with that of neural stem cell markers, and the overexpression of MCT8 accelerated the differentiation into neural cells. These results suggested that the transporters and their substrates also play a crucial role in the regulation of ES cell differentiation.
  • Toshimichi Nakamura, Shigeki Sugiura, Daisuke Kobayashi, Kenji Yoshida, Hikaru Yabuuchi, Shin Aizawa, Tomoji Maeda, Ikumi Tamai
    Pharmaceutical research 24(9) 1628-1635 2007年9月  査読有り
    PURPOSE: Recently, it was reported that OCTN1 transporter (SLC22A4) is associated with rheumatoid arthritis (RA) and Crohn's disease. Additionally, we reported that OCTN1 is expressed in hematopoietic cells, preferentially in erythroid cells. Accordingly, we assessed the physiological role of OCTN1 by examining the effect of knockdown of OCTN1 in blood cells using siRNA method. MATERIALS AND METHODS: Vector-based short hairpin RNA (shRNA) was used to establish K562 cell line which shows stably decreased expression of OCTN1. The characteristic of knockdown of OCTN1 in K562 cells was investigated by cell proliferation, cell differentiation, and uptake of ergothioneine that is a good substrate of OCTN1. RESULTS: Several clones of K562 cells exhibited significantly reduced expression of OCTN1 mRNA and protein. They also showed a decreased growth rate and butyrate-dependent differentiation to erythrocytes compared with control-vector transfected cells. In addition, uptake of [(3)H]ergothioneine by K562 cells suggested that Na(+)-dependent and high-affinity transporter which is similar to the characteristics of OCTN1 is functional. Moreover, uptake of ergothioneine by K562 cells which exhibit decreased-expression of OCTN1 was decreased in comparison with wild type K562 cells. CONCLUSIONS: It was suggested that OCTN1 is involved in the transport of physiological compounds that are important for cell proliferation and erythroid differentiation.
  • Hirotoshi Okumura, Miki Katoh, Toshiro Sawada, Miki Nakajima, Yoshinori Soeno, Hikaru Yabuuchi, Toshihiko Ikeda, Chise Tateno, Katsutoshi Yoshizato, Tsuyoshi Yokoi
    Toxicological sciences : an official journal of the Society of Toxicology 97(2) 533-538 2007年6月  査読有り
    The liver of a chimeric urokinase-type plasminogen activator (uPA)(+/+)/severe combined immunodeficient (SCID) mouse line recently established in Japan could be replaced by more than 80% with human hepatocytes. We previously reported that the chimeric mice with humanized liver could be useful as a human model in studies on drug metabolism and pharmacokinetics. In the present study, the humanization of an excretory pathway was investigated in the chimeric mice. Cefmetazole (CMZ) was used as a probe drug. The CMZ excretions in urine and feces were 81.0 and 5.9% of the dose, respectively, in chimeric mice and were 23.7 and 59.4% of the dose, respectively, in control uPA(-/-)/SCID mice. Because CMZ is mainly excreted in urine in humans, the excretory profile of chimeric mice was demonstrated to be similar to that of humans. In the chimeric mice, the hepatic mRNA expression of human drug transporters could be quantified. On the other hand, the hepatic mRNA expression of mouse drug transporters in the chimeric mice was significantly lower than in the control uPA(-/-)/SCID mice. In conclusion, chimeric mice exhibited a humanized profile of drug excretion, suggesting that this chimeric mouse line would be a useful animal model in excretory studies.
  • Takashi Iwanaga, Masanori Nakakariya, Hikaru Yabuuchi, Tomoji Maeda, Ikumi Tamai
    Biological & pharmaceutical bulletin 30(4) 739-747 2007年4月  査読有り
    The non-steroidal antiandrogen flutamide is widely used for treatment of prostatic cancer, but causes side effects, including cholestatic hepatitis and fulminant hepatitis. We investigated the pathogenesis of flutamide-induced cholestatic hepatitis, focusing on the bile salt export pump (BSEP; ABCB11), which exports bile salts to the bile. We examined the inhibitory effects of flutamide and its active metabolite, hydroxyflutamide, on the transport of taurocholic acid (TCA) by membrane vesicles derived from hBSEP-expressing Sf9 cells. Flutamide inhibited the transport of TCA by hBSEP (IC50 value, about 50 microM), while hydroxyflutamide had no effect at up to 100 microM. When flutamide was administered to rats as a single oral dose of 100 mg/kg, the biliary excretion rate of bolus-injected [3H]TCA was decreased and the liver tissue concentration of flutamide exceeded 50 microM. Repeated doses of flutamide for 5 d (10 mg/kg/d) also decreased the biliary excretion rate of bolus-injected [3H]TCA. In this case, the liver tissue concentration of flutamide was below 0.1 microM. In both cases, no change in the mRNA level of rat Bsep was detected by RT-PCR. These results suggest that flutamide itself, but not its major metabolite, may cause cholestasis by inhibiting BSEP-mediated bile salt excretion.
  • Seiji Nagashima, Hiroshi Soda, Mikio Oka, Takeshi Kitazaki, Ken Shiozawa, Yoichi Nakamura, Masaaki Takemura, Hikaru Yabuuchi, Minoru Fukuda, Kazuhiro Tsukamoto, Shigeru Kohno
    Cancer chemotherapy and pharmacology 58(5) 594-600 2006年11月  査読有り
    PURPOSE: Breast cancer resistance protein (BCRP) confers resistance against topoisomerase I inhibitors in cancer cells. Very recently, we reported that gefitinib reverses BCRP-mediated drug resistance by direct inhibition. However, it remains undetermined how much BCRP contributes to the resistance to topoisomerase I inhibitors in non-small cell lung cancer (NSCLC). The present study was designed to examine whether BCRP levels in NSCLC cells are correlated with the resistance to topoisomerase I inhibitors and the reversal effect by gefitinib. METHODS: BCRP levels and its function were evaluated by Western blotting and flowcytometry, respectively. Gefitinib-insensitive NSCLC cells expressed various levels of BCRP, which were closely correlated not only with the IC50 values of SN-38 (r=0.874, P<0.05) and those of topotecan (r=0.968, P<0.001), but also with the reversal effects of 1 microM gefitinib on SN-38 resistance (r=0.956, P<0.001) and topotecan resistance (r=0.977, P=0.0001). RESULTS: BCRP levels accounted for between 80 and 90% of the variation in the resistance to topoisomerase I inhibitors and the reversal effects by gefitinib. Also, gefitinib increased intracellular topotecan accumulation in proportion to the BCRP levels. CONCLUSIONS: These findings suggest that BCRP is the most important molecule responsible for topoisomerase I inhibitor resistance, and that the development of BCRP inhibitors is an effective approach for overcoming this resistance. In addition, the examination of BCRP levels in NSCLC tissues may identify an optimal patient population for treatment with topoisomerase I inhibitors alone or in combination with BCRP inhibitors.
  • Rikiya Ohashi, Yukari Kamikozawa, Mika Sugiura, Hajime Fukuda, Hikaru Yabuuchi, Ikumi Tamai
    Drug metabolism and disposition: the biological fate of chemicals 34(5) 793-799 2006年5月  査読有り
    The antiallergic agent bepotastine besilate is a nonsedating, second-generation H1-antagonist with high oral absorption and negligible distribution into brain. To clarify the role of P-glycoprotein (P-gp) in the pharmacokinetics of bepotastine, intestinal absorption and brain penetration studies were performed. [(14)C]Bepotastine transport in P-gp-overexpressed LLC-PK1 cells indicated that bepotastine was a substrate of P-gp. The affinity of bepotastine to P-gp estimated by ATPase activity assay was low, with a K(m) value of 1.25 mM. After i.v. administration, the brain/plasma free concentration ratio in mdr1-knockout mice was 3 times higher than that in wild-type mice. The in situ intestinal absorption studies of [(14)C]bepotastine in rats showed a clear regional difference, showing highest permeability at the upper part of small intestine with a decreasing permeability in the descending part of small intestine. The apparent absorption rate constant (ka) of [(14)C]bepotastine in the small intestine was greatly increased by cyclosporin A and verapamil, especially in the distal portion, and the site-specific absorption of [(14)C]bepotastine disappeared. The concentration dependence of ka of [(14)C]bepotastine was observed with a higher ka at higher concentration (20 mM) compared with that at lower concentration (1 microM). In conclusion, bepotastine is a substrate for P-gp, and P-gp clearly limited the brain distribution of bepotastine, whereas the effect of P-gp on intestinal absorption of bepotastine was minimal, presumably because of high membrane permeability at the upper region of small intestine where P-gp is less expressed. Such intestinal absorption property of bepotastine is distinctly different from the low membrane-permeable P-gp substrate fexofenadine.
  • Takashi Nozawa, Masato Suzuki, Hikaru Yabuuchi, Masanori Irokawa, Akira Tsuji, Ikumi Tamai
    Pharmaceutical research 22(10) 1634-1641 2005年10月  査読有り
    PURPOSE: The aim of the study is to suppress the progress of estrogen-dependent breast cancer by inhibiting the membrane transporter, which mediates the internalization of estrone-3-sulfate as estrogen precursor in the cancer cells. METHODS: The uptake of estrone-3-sulfate by estrogen-dependent breast cancer MCF-7 cells was measured, and inhibitory study using various organic anions on estrone-3-sulfate uptake by MCF-7 cells was conducted. The effects of the inhibitor on the transcription of reporter gene and cell proliferation induced by estrone-3-sulfate were examined. RESULTS: The uptake of estrone-3-sulfate by MCF-7 cells was saturable with Km value of 2.32 microM. The uptake was Na+-independent and was inhibited by several anionic compounds such as bromosulfophthalein. Bromosulfophthalein also significantly inhibited the transcription of reporter gene via estrogen response element and cell proliferation induced by estrone-3-sulfate. However, the transcriptional activation or cell proliferation induced by estrone was not inhibited by bromosulfophthalein. Reverse transcription-polymerase chain reaction analysis revealed the expression of mRNA of organic anion transporting polypeptide (OATP)-D and OATP-E as possible candidates to transport estrone-3-sulfate. CONCLUSIONS: The uptake of estrone-3-sulfate is mediated by Na+-independent transporter(s). Inhibitor of estrone-3-sulfate transporter suppressed the transcription and cell proliferation induced by estrone-3-sulfate in MCF-7 cells. The results provide the basis of a novel strategy for breast cancer treatment by focusing on the transporter responsible for the uptake of estrone-3-sulfate.
  • Takeshi Kitazaki, Mikio Oka, Yoichi Nakamura, Junji Tsurutani, Seiji Doi, Masa Yasunaga, Masaaki Takemura, Hikaru Yabuuchi, Hiroshi Soda, Shigeru Kohno
    Lung cancer (Amsterdam, Netherlands) 49(3) 337-343 2005年9月  査読有り
    Gefitinib (Iressa) is a selective epidermal growth factor receptor tyrosine kinase inhibitor and is used for the treatment of lung cancer. Recently, we discovered that it inhibits the breast cancer resistance protein, which is an ATP-binding cassette transporter. P-glycoprotein (Pgp) also pumps multiple types of drugs out of the cell using energy generated from ATP, and confers multidrug resistance on cancer cells. This study was designed to examine whether gefitinib inhibits the function of Pgp. We used multidrug resistant PC-6/PTX lung cancer and MCF-7/Adr breast cancer cells which overexpress Pgp and measured their drug sensitivity and drug-efflux function by tetrazolium assay and flowcytometry, respectively. In addition, the drug-stimulated ATPase activity of Pgp was measured using insect membranes that express human Pgp. Epidermal growth factor receptor was expressed in MCF-7/Adr, but not in PC-6/PTX cells, and the overexpression of Pgp did not confer resistance to gefitinib to both cell types. However, clinically achievable levels of gefitinib moderately reversed the Pgp-mediated resistance to paclitaxel and docetaxel in Pgp overexpressing cells. In addition, gefitinib increased the intracellular accumulation of the Pgp substrate rhodamine-123 in resistant cells, and activated ATPase in a preparation of pure Pgp-expressing membrane. These findings suggest that gefitinib directly interacts with Pgp and inhibits its function. Gefitinib may clinically inhibit the excretion of Pgp substrate drugs including anticancer agents, and its drug-interaction should therefore be considered.
  • Takashi Nozawa, Masato Suzuki, Koichi Takahashi, Hikaru Yabuuchi, Tomoji Maeda, Akira Tsuji, Ikumi Tamai
    The Journal of pharmacology and experimental therapeutics 311(3) 1032-1037 2004年12月  査読有り
    Although circulating estrone-3-sulfate is a major precursor of biologically active estrogen, permeation across the plasma membrane is unlikely to occur by diffusion because of the high hydrophilicity of the molecule. The object of this study was to clarify the involvement of specific transporter(s) in the supply of estrone-3-sulfate to human breast cancer-derived T-47D cells, which grow in an estrogen-dependent manner. The proliferation of T-47D cells was increased by the addition of estrone-3-sulfate, or estradiol, to the cultivation medium. The initial uptake rate of estrone-3-sulfate kinetically exhibited a single saturable component, with Km and Vmax values of 7.6 microM and 172 pmol/mg of protein/min, respectively. The replacement of extracellular Na+ with Li+, K+, or N-methylglucamine+ had no effect on the uptake of [3H]estrone-3-sulfate. The uptake was strongly inhibited by sulfate conjugates of steroid hormones, but not by estradiol-17beta-glucuronide. Taurocholate and sulfobromophthalein inhibited the uptake, whereas other tested anionic and cationic compounds did not. The expression of organic anion transporting polypeptides, OATP-D and OATP-E, which are candidate transporters of estrone-3-sulfate, was detected by reverse transcription-polymerase chain reaction analysis, although their actual involvement in the uptake of estrogen remains to be clarified. In conclusion, the uptake of estrone-3-sulfate by T-47D cells was mediated by a carrier-mediated transport mechanism, suggesting that the estrogen precursor is actively imported by estrogen-dependent breast cancer cells.
  • Daisuke Kobayashi, Shin Aizawa, Tomoji Maeda, Isao Tsuboi, Hikaru Yabuuchi, Jun-ichi Nezu, Akira Tsuji, Ikumi Tamai
    Experimental hematology 32(12) 1156-1162 2004年12月  査読有り
    OBJECTIVE: Organic cation/carnitine transporter, OCTN1 (SLC22A4) shows a relatively broad tissue distribution and transports organic cations in a pH-dependent manner. However, its physiological role remains to be clarified. To understand the physiological role of OCTN1, tissue expression of OCTN1 in human and mice was characterized. METHODS: Expression of OCTN1 in various tissues and blood cells was examined by reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and flow cytometry analysis. RESULTS: Mouse OCTN1 mRNA was detected in kidney, smooth muscle, and hematopoietic tissues, such as spleen and bone marrow, by RT-PCR analysis. Further study focused on expression of OCTN1 in various types of blood cells. OCTN1 mRNA was detected in myeloid cells in mouse bone marrow, but not in lymphoid cells. Bone marrow nuclear cells positive for TER119, an erythrocyte marker, showed strong expression of OCTN1. Similarly, OCTN1 was strongly expressed in glycophorin A-positive erythroid cells obtained from human cord blood. In Western blot analysis, OCTN1 protein was detected in isolated mouse mature peripheral erythrocytes. Further analysis by RT-PCR and flow cytometry showed OCTN1 was expressed in both glycophorin A-positive and negative erythroid cells after cultivation. These findings suggested that OCTN1 transports compound(s) that are required for erythroid differentiation, maturation, and/or growth. CONCLUSION: The present study demonstrated that OCTN1 is associated with myeloid cells rather than lymphoid cells, and especially with erythroid-lineage cells at the transition stage from immature erythroid cells to peripheral mature erythrocytes.
  • Hikaru Yabuuchi, Shin ichiro Takayanagi, Keigo Yoshinaga, Naoyuki Taniguchi, Hiroyuki Aburatani, Toshihisa Ishikawa
    Biochemical and biophysical research communications 299(3) 410-417 2002年12月6日  査読有り
    In the present study, we have cloned the cDNA of ABCC13, a novel ABC transporter, from the cDNA library of adult human placenta. The ABCC13 gene spans approximately 70kb on human chromosome 21q11.2 and consists of 14 exons. The open reading frame of the ABCC13 cDNA encodes a peptide consisting of 325 amino acid residues. The amino acid sequence corresponding to putative membrane-spanning domains was remarkably similar to ABCC1, ABCC2, ABCC3, and ABCC6. The ABCC13 gene was expressed in the fetal liver at the highest level among the organs studied. While ABCC13 was expressed in the bone marrow, its expression in peripheral blood leukocytes of adult humans was much lower and no detectable levels were observed in differentiated hematopoietic cells. The expression of ABCC13 in K562 cells decreased during cell differentiation induced by TPA. These results suggest that the expression of human ABCC13 is related with hematopoiesis.
  • Megumi Yoshikawa, Hikaru Yabuuchi, Asato Kuroiwa, Yoji Ikegami, Yoshimichi Sai, Ikumi Tamai, Akira Tsuji, Yoichi Matsuda, Hisahiro Yoshida, Toshihisa Ishikawa
    Gene 293(1-2) 67-75 2002年6月26日  査読有り
    We have cloned a new mouse ATP-binding cassette (ABC) transporter, Abcg4, from a complementary DNA (cDNA) library of mouse brain. The cloned Abcg4 cDNA encodes a protein consisting of 646 amino acids and including one ATP-binding cassette and six transmembrane domains. The Abcg4 protein exhibits high identity (96%) with human ABCG4 in terms of the amino acid sequence. Fluorescence in situ hybridization with mouse and rat chromosomes has revealed that the Abcg4 gene is located on chromosomes 9A5.3 and 8q22 distal in mouse and rat, respectively. In these loci on mouse and rat chromosomes, conserved linkage homologies were hitherto identified with human chromosome 11q23, which involves the human ABCG4 gene. The mouse Abcg4 gene as well as the human ABCG4 gene each has a total of 14 exons to encode its respective protein. High transcript levels of mouse Abcg4 were detected in mouse brain, spleen, eye, and bone marrow. Taken together, our data on the chromosomal location, gene homology, protein structure, and phylogenetic relationships strongly support the idea that mouse Abcg4 is orthologue to the human ABCG4. By functionally analyzing the mouse Abcg4 protein, we may better understand the biological role of the human ABCG4 transporter.
  • Megumi Yoshikawa, Shiho Kasamatsu, Masa Yasunaga, Guizhi Wang, Yoji Ikegami, Hisahiro Yoshida, Shigeki Tarui, Hikaru Yabuuchi, Toshihisa Ishikawa
    Drug metabolism and pharmacokinetics 17(2) 130-135 2002年  査読有り
    Accumulating evidence suggests that several ATP-binding cassette (ABC) transporters mediate the elimination of anticancer drugs from cancer cells and thereby confer drug resistance. SN-38-selected PC-6/SN2-5H human lung carcinoma cells were shown to overexpress ABCG2 with the reduced intracellular accumulation of SN-38, the active metabolite of irinotecan. We have recently demonstrated that plasma membrane vesicles prepared from those cells transported SN-38 in an ATP-dependent manner, and it was suggested that ABCG2 is involved in the active extrusion of SN-38 from cancer cells. In the present study, we have cloned the cDNA of ABCG2 from PC-6/SN2-5H human lung carcinoma cells, expressed ABCG2 in Sf9 insect cells, and characterized its function. Sequence analysis has revealed that the cloned ABCG2 has an arginine at the amino acid position 482, as does the wild type. Expression of the cloned ABCG2 in Sf9 cell membranes was detected by immunoblotting with the BXP-21 antibody. Contrary to our expectation, however, ATPase activity in the cell membranes expressing ABCG2 was stimulated by neither SN-38 nor rhodamine 123. It is suggested that there is a partner protein of ABCG2 required for heterodimer formation to exhibit transport activity toward SN-38.
  • Hikaru Yabuuchi, Hidetada Shimizu, Shin-ichiro Takayanagi, Toshihisa Ishikawa
    Biochemical and Biophysical Research Communications 288(4) 933-939 2001年11月  査読有り
  • Hiroshi Uchino, Ikumi Tamai, Katsumi Yamashita, Yuzuru Minemoto, Yoshimichi Sai, Hikaru Yabuuchi, Ken-ichi Miyamoto, Eiji Takeda, Akira Tsuji
    Biochemical and Biophysical Research Communications 270(1) 254-259 2000年4月  査読有り
  • Hiroshi Uchino, Ikumi Tamai, Hikaru Yabuuchi, Kayoko China, Ken-ichi Miyamoto, Eiji Takeda, Akira Tsuji
    Antimicrobial Agents and Chemotherapy 44(3) 574-577 2000年3月1日  査読有り
    <title>ABSTRACT</title> We previously showed that the mouse inorganic phosphate transporter Npt1 operates in the hepatic sinusoidal membrane transport of anionic drugs such as benzylpenicillin and mevalonic acid. In the present study, the mechanism of renal secretion of penem antibiotics was examined by using a <italic>Xenopus</italic> oocyte expression system. Faropenem (an oral penem antibiotic) was transported via Npt1 with a Michaelis-Menten constant of 0.77 ± 0.34 mM in a sodium-independent but chloride ion-sensitive manner. When the concentration of chloride ions was increased, the transport activity of faropenem by Npt1 was decreased. Since the concentration gradient of chloride ions is in the lumen-to-intracellular direction, faropenem is expected to be transported from inside proximal tubular cells to the lumen. So, we tested the release of faropenem from <italic>Xenopus</italic>oocytes. The rate of efflux of faropenem from Npt1-expressing oocytes was about 9.5 times faster than that from control water-injected<italic>Xenopus</italic> oocytes. Faropenem transport by Npt1 was significantly inhibited by β-lactam antibiotics such as benzylpenicillin, ampicillin, cephalexin, and cefazolin to 24.9, 40.5, 54.4, and 26.2% of that for the control, respectively. Zwitterionic β-lactam antibiotics showed lesser inhibitory effects on faropenem uptake than anionic derivatives, indicating that Npt1 preferentially transports anionic compounds. Other anionic compounds, such as indomethacin and furosemide, and the anion transport inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid significantly inhibited faropenem uptake mediated by Npt1. In conclusion, our results suggest that Npt1 participates in the renal secretion of penem antibiotics.
  • Ikumi Tamai, Yoshimichi Sai, Akihiko Ono, Yasuto Kido, Hikaru Yabuuchi, Hitomi Takanaga, Eiko Satoh, Takuo Ogihara, Osamu Amano, Shoichi Izeki, Akira Tsuji
    Journal of Pharmacy and Pharmacology 51(10) 1113-1121 1999年10月  査読有り
  • Hikaru Yabuuchi, Ikumi Tamai, Jun-Ichi Nezu, Kazuki Sakamoto, Asuka Oku, Miyuki Shimane, Yoshimichi Sai, Akira Tsuji
    289(2) 768-773 1999年5月  査読有り
  • Jun-ichi Nezu, Ikumi Tamai, Asuka Oku, Rikiya Ohashi, Hikaru Yabuuchi, Noriyoshi Hashimoto, Hiroko Nikaido, Yoshimichi Sai, Akio Koizumi, Yutaka Shoji, Goro Takada, Toyojiro Matsuishi, Makoto Yoshino, Hirohisa Kato, Toshihiro Ohura, Gozoh Tsujimoto, Jun-ichiro Hayakawa, Miyuki Shimane, Akira Tsuji
    Nature Genetics 21(1) 91-94 1999年1月  査読有り
  • Rikiya Ohashi, Ikumi Tamai, Hikaru Yabuuchi, Jun-Ichi Nezu, Asuka Oku, Yoshimichi Sai, Miyuki Shimane, Akira Tsuji
    Journal of Pharmacology and Experimental Therapeutics 291(2) 778-784 1998年11月  査読有り
  • 大橋 力也, 藪内 光, 根津 淳一, 奥 飛鳥, 嶋根 みゆき, 崔 吉道, 玉井 郁巳, 辻 彰
    薬物動態 13(Suppl.) S177-S177 1998年10月  
  • Hikaru Yabuuchi, Ikumi Tamai, Kyoko Morita, Tomoko Kouda, Ken-Ichi Miyamoto, Eiji Takeda, Akira Tsuji
    J Pharmacol Exp Ther 286(3) 1391-1396 1998年9月  査読有り筆頭著者
  • Ikumi Tamai, Rikiya Ohashi, Jun-ichi Nezu, Hikaru Yabuuchi, Asuka Oku, Miyuki Shimane, Yoshimichi Sai, Akira Tsuji
    Journal of Biological Chemistry 273(32) 20378-20382 1998年8月7日  査読有り
  • Hikaru Yabuuchi, Ikumi Tamai, Yoshimichi Sai, Akira Tsuji
    Pharmaceutical Research 15(3) 411-416 1998年  査読有り
  • Ikumi Tamai, Hikaru Yabuuchi, Jun-ichi Nezu, Yoshimichi Sai, Asuka Oku, Miyuki Shimane, Akira Tsuji
    FEBS Letters 419(1) 107-111 1997年12月8日  査読有り
  • Ikumi Tamai, Hitomi Takanaga, Hiroshi Maeda, Hikaru Yabuuchi, Yoshimichi Sai, Yuichi Suzuki, Akira Tsuji
    Journal of Pharmacy and Pharmacology 49(1) 108-112 1997年1月  査読有り
  • Hitomi Takanaga, Hiroshi Maeda, Hikaru Yabuuchi, Ikumi Tamai, Haruhiro Higashida, Akira Tsuji
    Journal of Pharmacy and Pharmacology 48(10) 1073-1077 1996年10月  査読有り

MISC

 1

共同研究・競争的資金等の研究課題

 1