Shiori Taga, Hidetaka Suga, Tokushige Nakano, Atsushi Kuwahara, Naoko Inoshita, Yu Kodani, Hiroshi Nagasaki, Yoshitaka Sato, Yusuke Tsumura, Mayu Sakakibara, Mika Soen, Tsutomu Miwata, Hajime Ozaki, Mayuko Kano, Kenji Watari, Atsushi Ikeda, Mitsugu Yamanaka, Yasuhiko Takahashi, Sachiko Kitamoto, Yohei Kawaguchi, Takashi Miyata, Tomoko Kobayashi, Mariko Sugiyama, Takeshi Onoue, Yoshinori Yasuda, Daisuke Hagiwara, Shintaro Iwama, Yoshitaka Tomigahara, Toru Kimura, Hiroshi Arima
Stem cell reports, 18(8) 1657-1671, May 30, 2023
Pituitary organoids are promising graft sources for transplantation in treatment of hypopituitarism. Building on development of self-organizing culture to generate pituitary-hypothalamic organoids (PHOs) using human pluripotent stem cells (hPSCs), we established techniques to generate PHOs using feeder-free hPSCs and to purify pituitary cells. The PHOs were uniformly and reliably generated through preconditioning of undifferentiated hPSCs and modulation of Wnt and TGF-β signaling after differentiation. Cell sorting using EpCAM, a pituitary cell-surface marker, successfully purified pituitary cells, reducing off-target cell numbers. EpCAM-expressing purified pituitary cells reaggregated to form three-dimensional pituitary spheres (3D-pituitaries). These exhibited high adrenocorticotropic hormone (ACTH) secretory capacity and responded to both positive and negative regulators. When transplanted into hypopituitary mice, the 3D-pituitaries engrafted, improved ACTH levels, and responded to in vivo stimuli. This method of generating purified pituitary tissue opens new avenues of research for pituitary regenerative medicine.