Curriculum Vitaes

oba shigeo

  (大場 茂生)

Profile Information

Affiliation
School of Medicine Faculty of Medicine, Fujita Health University
Degree
博士(医学)(慶應義塾大学)

J-GLOBAL ID
201501012305363795
researchmap Member ID
7000013154

Education

 2

Papers

 99
  • Masayuki Kanamori, Ichiyo Shibahara, Yoshiteru Shimoda, Yukinori Akiyama, Takaaki Beppu, Shigeo Ohba, Toshiyuki Enomoto, Takahiro Ono, Yuta Mitobe, Mitsuto Hanihara, Yohei Mineharu, Joji Ishida, Kenichiro Asano, Yasuyuki Yoshida, Manabu Natsumeda, Sadahiro Nomura, Tatsuya Abe, Hajime Yonezawa, Ryuichi Katakura, Soichiro Shibui, Toshihiko Kuroiwa, Hiroyoshi Suzuki, Hidehiro Takei, Haruo Matsushita, Ryuta Saito, Yoshiki Arakawa, Yukihiko Sonoda, Yuichi Hirose, Toshihiro Kumabe, Takuhiro Yamaguchi, Hidenori Endo, Teiji Tominaga
    International journal of clinical oncology, Nov 11, 2024  
    BACKGROUND: To improve the outcome in newly diagnosed glioblastoma patients with maximal resection, we aimed to evaluate the efficacy and safety of implantation of carmustine wafers (CWs), radiation concomitant with temozolomide and bevacizumab, and maintenance chemotherapy with six cycles of temozolomide and bevacizumab. METHOD: This prospective phase II study enrolled glioblastoma patients considered candidates for complete resection (> 90%) of a contrast-enhanced lesion. The CWs were intraoperatively implanted into the resection cavity after achieving maximal resection. Patients without a measurable contrast-enhanced lesion on magnetic resonance imaging within 48 h after resection received concomitant radiotherapy and chemotherapy with temozolomide and bevacizumab, followed by maintenance treatment with up to six cycles of temozolomide and bevacizumab. The primary endpoint was the 2-year overall survival rate in glioblastoma patients with protocol treatment. RESULTS: From October 2015 to April 2018, we obtained consent for the first registration from 70 patients across 17 institutions in Japan, and 49 patients were treated according to the protocol. We evaluated the safety in 49 patients who were part of the second registration and the efficacy in 45 glioblastoma patients treated according to the protocol. The profile of hematological and most of the non-hematological adverse effects was similar to that in previous studies, but stroke occurred in 12% of cases (6/49 patients). The estimated 2-year overall survival rate was 51.3%. CONCLUSION: Implantation of CWs, followed by concomitant radiation, temozolomide, and bevacizumab, and six cycles of temozolomide and bevacizumab may offer some benefit to survival in Japanese glioblastoma patients with maximal resection. TRIAL ID: jRCTs021180007.
  • 大場 茂生, 杉原 英志, 山田 勢至, 中江 俊介, 西山 悠也, 武藤 淳, 安達 一英, 安部 雅人, 佐谷 秀行, 廣瀬 雄一
    Brain Tumor Pathology, 40(Suppl.) 061-061, May, 2023  
  • Shunsuke Nakae, Masanobu Kumon, Takao Teranishi, Shigeo Ohba, Yuichi Hirose
    Brain Sciences, 13(3) 482-482, Mar 13, 2023  
    Fence-post catheter techniques are used to use tumor margins when resecting gliomas. In the present study, deep electrodes instead of catheters were used as fence-posts. The case of a 25-year-old female patient whose magnetic resonance images (MRI) revealed a tumor in the left cingulate gyrus is presented in this study. She underwent daily seizures without loss of consciousness under the administration of anti-seizure medications. Despite video electroencephalography (EEG) monitoring, the scalp inter-ictal EEG did not show obvious epileptiform discharges. We were consequently uncertain whether such frequent seizures were epileptic seizures or not. As a result, deep electrodes were used as fence-posts: three deep electrodes were inserted into the tumor’s anterior, lateral, and posterior margins using a navigation-guided method. The highest epileptic discharge was detected from the anterior deep electrode. As a result, ahead of the tumor was extendedly resected, and epileptic discharges were eliminated using EEG. The postoperative MRI revealed that the tumor was resected. The patient has never experienced seizures after the surgery. In conclusion, when supratentorial gliomas complicated by frequent seizures are resected, intraoperative EEG monitoring using deep electrodes as fence-posts is useful for estimating epileptogenic areas.
  • Tatsuo Omi, Motoharu Hayakawa, Kazuhide Adachi, Shigeo Ohba, Akiyo Sadato, Akiko Hasebe, Takuma Ishihara, Ichiro Nakahara, Yuichi Hirose
    Journal of computer assisted tomography, Mar 9, 2023  
    OBJECTIVE: Although a qualitative diagnosis of plaque causing carotid stenosis has been attempted with carotid computed tomography angiography (CaCTA), no clear findings have been reported. We examined the correlation between the plaque CT values and plaque images obtained by magnetic resonance imaging to derive a qualitative diagnosis of the plaque using CaCTA. METHODS: Preoperative CaCTA images acquired from patients stented for carotid stenosis were retrospectively analyzed with respect to magnetization-prepared rapid acquisition with gradient echo and time-of-flight magnetic resonance angiography data. Carotid plaques in the stenosed region were quantified in terms of CT density and the plaque/muscle ratio (magnetization-prepared rapid acquisition with gradient echo), and correlations between these 2 features were determined. Plaques were classified as stable or unstable based on the plaque/muscle ratio, with the smallest plaque/muscle ratio observed among plaques positive for intraplaque hemorrhage set as the cutoff value (1.76). RESULTS: A total of 165 patients (179 plaques) were included. Perioperative complications included minor stroke (n = 3), major stroke (n = 1, fatal), and hyperperfusion (n = 2). The correlation between CT density and the plaque/muscle ratio was nonlinear (P = 0.0139) and negative (P < 0.0001). The cutoff point (1.76) corresponded to a CT density of 83 HU, supporting this value as a standard reference for plaque stability. CONCLUSIONS: Computed tomography density exhibits a nonlinear (P = 0.0139) and highly negative correlation (P < 0.0001) with the plaque/muscle ratio. Our results demonstrate that plaque characteristics can be meaningfully diagnosed based on CaCTA image data.
  • Kazuhiro Murayama, Yoshiharu Ohno, Masao Yui, Kaori Yamamoto, Masato Ikedo, Shigeo Ohba, Satomu Hanamatsu, Akiyoshi Iwase, Hirotaka Ikeda, Yuichi Hirose, Hiroshi Toyama
    Journal of computer assisted tomography, Feb 10, 2023  
    OBJECTIVE: Although amide proton transfer-weighted (APTw) imaging is reported by 2-dimensional (2D) spin-echo-based sequencing, 3-dimensional (3D) APTw imaging can be obtained by gradient-echo-based sequencing. The purpose of this study was to compare the efficacy of APTw imaging between 2D and 3D imaging in patients with various brain tumors. METHODS: A total of 49 patients who had undergone 53 examinations [5 low-grade gliomas (LGG), 16 high-grade gliomas (HGG), 6 malignant lymphomas, 4 metastases, and 22 meningiomas] underwent APTw imaging using 2D and 3D sequences. The magnetization transfer ratio asymmetry (MTRasym) was assessed by means of region of interest measurements. Pearson correlation was performed to determine the relationship between MTRasym for the 2 methods, and Student's t test to compare MTRasym for LGG and HGG. The diagnostic accuracy to differentiate HGG from LGG of the 2 methods was compared by means of the McNemar test. RESULTS: Three-dimensional APTw imaging showed a significant correlation with 2D APTw imaging (r = 0.79, P < 0.0001). The limits of agreement between the 2 methods were -0.021 ± 1.42%. The MTRasym of HGG (2D: 1.97 ± 0.96, 3D: 2.11 ± 0.95) was significantly higher than those of LGG (2D: 0.46 ± 0.89%, P < 0.01; 3D: 0.15 ± 1.09%, P < 0.001). The diagnostic performance of the 2 methods to differentiate HGG from LGG was not significantly different (P = 1). CONCLUSIONS: The potential capability of 3D APTw imaging is equal to or greater than that of 2D APTw imaging and is considered at least as valuable in patients with brain tumors.

Misc.

 49

Presentations

 32

Research Projects

 19

Other

 2
  • 特になし
  • 神経膠腫PDXモデル *本研究ニーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進セン ター(fuji-san@fujita-hu.ac.jp)まで