医学部

大場 茂生

oba shigeo

基本情報

所属
藤田医科大学 医学部 医学科 脳神経外科学 准教授
学位
博士(医学)(慶應義塾大学)

J-GLOBAL ID
201501012305363795
researchmap会員ID
7000013154

学歴

 2

論文

 97
  • 大場 茂生, 杉原 英志, 山田 勢至, 中江 俊介, 西山 悠也, 武藤 淳, 安達 一英, 安部 雅人, 佐谷 秀行, 廣瀬 雄一
    Brain Tumor Pathology 40(Suppl.) 061-061 2023年5月  
  • Shunsuke Nakae, Masanobu Kumon, Takao Teranishi, Shigeo Ohba, Yuichi Hirose
    Brain Sciences 13(3) 482-482 2023年3月13日  
    Fence-post catheter techniques are used to use tumor margins when resecting gliomas. In the present study, deep electrodes instead of catheters were used as fence-posts. The case of a 25-year-old female patient whose magnetic resonance images (MRI) revealed a tumor in the left cingulate gyrus is presented in this study. She underwent daily seizures without loss of consciousness under the administration of anti-seizure medications. Despite video electroencephalography (EEG) monitoring, the scalp inter-ictal EEG did not show obvious epileptiform discharges. We were consequently uncertain whether such frequent seizures were epileptic seizures or not. As a result, deep electrodes were used as fence-posts: three deep electrodes were inserted into the tumor’s anterior, lateral, and posterior margins using a navigation-guided method. The highest epileptic discharge was detected from the anterior deep electrode. As a result, ahead of the tumor was extendedly resected, and epileptic discharges were eliminated using EEG. The postoperative MRI revealed that the tumor was resected. The patient has never experienced seizures after the surgery. In conclusion, when supratentorial gliomas complicated by frequent seizures are resected, intraoperative EEG monitoring using deep electrodes as fence-posts is useful for estimating epileptogenic areas.
  • Tatsuo Omi, Motoharu Hayakawa, Kazuhide Adachi, Shigeo Ohba, Akiyo Sadato, Akiko Hasebe, Takuma Ishihara, Ichiro Nakahara, Yuichi Hirose
    Journal of computer assisted tomography 2023年3月9日  
    OBJECTIVE: Although a qualitative diagnosis of plaque causing carotid stenosis has been attempted with carotid computed tomography angiography (CaCTA), no clear findings have been reported. We examined the correlation between the plaque CT values and plaque images obtained by magnetic resonance imaging to derive a qualitative diagnosis of the plaque using CaCTA. METHODS: Preoperative CaCTA images acquired from patients stented for carotid stenosis were retrospectively analyzed with respect to magnetization-prepared rapid acquisition with gradient echo and time-of-flight magnetic resonance angiography data. Carotid plaques in the stenosed region were quantified in terms of CT density and the plaque/muscle ratio (magnetization-prepared rapid acquisition with gradient echo), and correlations between these 2 features were determined. Plaques were classified as stable or unstable based on the plaque/muscle ratio, with the smallest plaque/muscle ratio observed among plaques positive for intraplaque hemorrhage set as the cutoff value (1.76). RESULTS: A total of 165 patients (179 plaques) were included. Perioperative complications included minor stroke (n = 3), major stroke (n = 1, fatal), and hyperperfusion (n = 2). The correlation between CT density and the plaque/muscle ratio was nonlinear (P = 0.0139) and negative (P < 0.0001). The cutoff point (1.76) corresponded to a CT density of 83 HU, supporting this value as a standard reference for plaque stability. CONCLUSIONS: Computed tomography density exhibits a nonlinear (P = 0.0139) and highly negative correlation (P < 0.0001) with the plaque/muscle ratio. Our results demonstrate that plaque characteristics can be meaningfully diagnosed based on CaCTA image data.
  • Kazuhiro Murayama, Yoshiharu Ohno, Masao Yui, Kaori Yamamoto, Masato Ikedo, Shigeo Ohba, Satomu Hanamatsu, Akiyoshi Iwase, Hirotaka Ikeda, Yuichi Hirose, Hiroshi Toyama
    Journal of computer assisted tomography 2023年2月10日  
    OBJECTIVE: Although amide proton transfer-weighted (APTw) imaging is reported by 2-dimensional (2D) spin-echo-based sequencing, 3-dimensional (3D) APTw imaging can be obtained by gradient-echo-based sequencing. The purpose of this study was to compare the efficacy of APTw imaging between 2D and 3D imaging in patients with various brain tumors. METHODS: A total of 49 patients who had undergone 53 examinations [5 low-grade gliomas (LGG), 16 high-grade gliomas (HGG), 6 malignant lymphomas, 4 metastases, and 22 meningiomas] underwent APTw imaging using 2D and 3D sequences. The magnetization transfer ratio asymmetry (MTRasym) was assessed by means of region of interest measurements. Pearson correlation was performed to determine the relationship between MTRasym for the 2 methods, and Student's t test to compare MTRasym for LGG and HGG. The diagnostic accuracy to differentiate HGG from LGG of the 2 methods was compared by means of the McNemar test. RESULTS: Three-dimensional APTw imaging showed a significant correlation with 2D APTw imaging (r = 0.79, P < 0.0001). The limits of agreement between the 2 methods were -0.021 ± 1.42%. The MTRasym of HGG (2D: 1.97 ± 0.96, 3D: 2.11 ± 0.95) was significantly higher than those of LGG (2D: 0.46 ± 0.89%, P < 0.01; 3D: 0.15 ± 1.09%, P < 0.001). The diagnostic performance of the 2 methods to differentiate HGG from LGG was not significantly different (P = 1). CONCLUSIONS: The potential capability of 3D APTw imaging is equal to or greater than that of 2D APTw imaging and is considered at least as valuable in patients with brain tumors.
  • Shigeo Ohba, Kazuhiro Murayama, Takao Teranishi, Masanobu Kumon, Shunsuke Nakae, Masao Yui, Kaori Yamamoto, Seiji Yamada, Masato Abe, Mitsuhiro Hasegawa, Yuichi Hirose
    Cancers 15(3) 952-952 2023年2月2日  
    Distinguishing primary central nervous system lymphoma (PCNSL) from glioblastoma, isocitrate dehydrogenase (IDH)-wildtype is sometimes hard. Because the role of operation on them varies, accurate preoperative diagnosis is crucial. In this study, we evaluated whether a specific kind of chemical exchange saturation transfer imaging, i.e., amide proton transfer-weighted (APTw) imaging, was useful to distinguish PCNSL from glioblastoma, IDH-wildtype. A total of 14 PCNSL and 27 glioblastoma, IDH-wildtype cases were evaluated. There was no significant difference in the mean APTw signal values between the two groups. However, the percentile values from the 1st percentile to the 20th percentile APTw signals and the width1–100 APTw signals significantly differed. The highest area under the curve was 0.796, which was obtained from the width1–100 APTw signal values. The sensitivity and specificity values were 64.3% and 88.9%, respectively. APTw imaging was useful to distinguish PCNSL from glioblastoma, IDH-wildtype. To avoid unnecessary aggressive surgical resection, APTw imaging is recommended for cases in which PCNSL is one of the differential diagnoses.

MISC

 49

講演・口頭発表等

 22

共同研究・競争的資金等の研究課題

 19

その他

 2
  • 特になし
  • 神経膠腫PDXモデル *本研究ニーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進セン ター(fuji-san@fujita-hu.ac.jp)まで