研究者業績
基本情報
- 所属
- 藤田医科大学 医療科学部 放射線学科 講師
- 学位
- 博士(医療技術学)(名古屋大学)
- 研究者番号
- 50804514
- J-GLOBAL ID
- 201701009374019765
- researchmap会員ID
- 7000020008
- 外部リンク
研究キーワード
1研究分野
1経歴
3-
2021年4月 - 現在
-
2017年4月 - 2021年3月
-
2010年4月 - 2017年3月
学歴
2-
2014年4月 - 2017年3月
-
2008年4月 - 2010年3月
委員歴
4-
2024年4月 - 現在
-
2022年4月 - 現在
-
2020年6月 - 現在
-
2018年4月 - 2022年3月
受賞
4論文
31-
Medical Physics 2025年3月29日 査読有り筆頭著者責任著者Abstract Background Accurate dosimetry is important in radiotherapy, and all equipment used for radiotherapy shoud be audited by an independent external dose audit. Radiophotoluminescence glass dosimeter (RPLD) has excellent characteristics and is widely used for postal dose audit; however, postal dose audit for proton therapy using RPLD has not been established. Purpose This study aims to develop a postal dose audit procedure for scanning proton beams using RPLD, estimate uncertainties, and conduct a multicenter pilot study to validate the methodology. Methods A postal toolkit was developed and a postal dose audit procedure for RPLD measurements of scanning proton beams was established in cooperation with several facilities that employ various accelerators, irradiation equipment, and treatment planning systems (TPS) for clinical use. Based on basic and previous studies, an uncertainty budget was developed for estimating relative uncertainty and pilot studies were conducted at each site. A method for postal dose audits was developed in a multicenter collaboration to develop an approach suitable for implementation across multiple facilities. Results The relative response of 60 RPLDs for scanning proton beam examined in this study was 1.00 ± 1.28% mean ± standard deviation. The combined relative standard uncertainty of postal dosimetry for scanning proton beams using the RPLD was 2.97% (k = 1). Under the reference condition, the maximum differences between the ionization chamber measurement (IC) and TPS, RPLD and TPS, and RPLD and IC were 0.97, 1.88, and 2.12%, respectively. The maximum differences between the RPLD and ionization chamber for plateau measurements at 3 cm depth using single‐energy and non‐reference conditions were 11.31 and 4.02%, respectively. Conclusion We established a procedure for the postal dose audits of proton beams using RPLD and presented the results of a multicenter pilot study. By standardizing the reference conditions, the dosimetry uncertainty was estimated at 2.92%. The results demonstrated the feasibility of performing an independent third‐party dose audit of scanning proton beams using RPLD, and for such postal dose audits for proton beams, the irradiation conditions should be standardized to reduce uncertainties. These results are expected to contribute to the development of proton beams.
-
Radiological physics and technology 2024年9月10日 査読有りThis study aimed to evaluate the performance for answering the Japanese medical physicist examination and providing the benchmark of knowledge about medical physics in language-generative AI with large language model. We used questions from Japan's 2018, 2019, 2020, 2021 and 2022 medical physicist board examinations, which covered various question types, including multiple-choice questions, and mainly focused on general medicine and medical physics. ChatGPT-3.5 and ChatGPT-4.0 (OpenAI) were used. We compared the AI-based answers with the correct ones. The average accuracy rates were 42.2 ± 2.5% (ChatGPT-3.5) and 72.7 ± 2.6% (ChatGPT-4), showing that ChatGPT-4 was more accurate than ChatGPT-3.5 [all categories (except for radiation-related laws and recommendations/medical ethics): p value < 0.05]. Even with the ChatGPT model with higher accuracy, the accuracy rates were less than 60% in two categories; radiation metrology (55.6%), and radiation-related laws and recommendations/medical ethics (40.0%). These data provide the benchmark for knowledge about medical physics in ChatGPT and can be utilized as basic data for the development of various medical physics tools using ChatGPT (e.g., radiation therapy support tools with Japanese input).
-
Radiological Physics and Technology 2024年1月23日 査読有り責任著者
-
Technical Innovations & Patient Support in Radiation Oncology 28 100221-100221 2023年12月 査読有り
-
Cureus 15(10) e48041 2023年10月 査読有りBackground This study evaluates dose perturbations caused by nonradioactive seeds in clinical cases by employing treatment planning system-based Monte Carlo (TPS-MC) simulation. Methodology We investigated dose perturbation using a water-equivalent phantom and 20 clinical cases of prostate cancer (10 cases with seeds and 10 cases without seeds) treated at Fujita Health University Hospital, Japan. First, dose calculations for a simple geometry were performed using the RayStation MC algorithm for a water-equivalent phantom with and without a seed. TPS-independent Monte Carlo (full-MC) simulations and film measurements were conducted to verify the accuracy of TPS-MC simulation. Subsequently, dose calculations using TPS-MC were performed on CT images of clinical cases of prostate cancer with and without seeds, and the dose distributions were compared. Results In clinical cases, dose calculations using MC simulations revealed hotspots around the seeds. However, the size of the hotspot was not correlated with the number of seeds. The maximum difference in dose perturbation between TPS-MC simulations and film measurements was 3.9%, whereas that between TPS-MC simulations and full-MC simulations was 3.7%. The dose error of TPS-MC was negligible for multiple beams or rotational irradiation. Conclusions Hotspots were observed in dose calculations using TPS-MC performed on CT images of clinical cases with seeds. The dose calculation accuracy around the seeds using TPS-MC simulations was comparable to that of film measurements and full-MC simulations, with differences within 3.9%. Although the clinical impact of hotspots occurring around the seeds is minimal, utilizing MC simulations on TPSs can be beneficial to verify their presence.
MISC
45-
Japanese Journal of Radiology 37(Suppl.) 30-30 2019年2月
-
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS 99(2) E597-E597 2017年10月
-
Japanese Journal of Radiology 33(Suppl.) 55-55 2015年2月 査読有り
-
Particle Therapy Co-Operative Group 54th Meeting 2015年
-
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS 90 S779-S779 2014年9月
-
Japanese Journal of Medical Physics 34(Sup. 1) 57 2014年4月
-
Japanese Journal of Medical Physics 34(Sup. 1) 137 2014年4月
-
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS 87(2) S642-S642 2013年10月
-
Proceedings of Eighteenth EGS Users' Meeting in Japan 49-57 2011年10月
-
放射線防護分科会会誌 32 61-61 2011年
-
Proceedings of the Seventeenth EGS User's Meeting in Japan 25-32 2010年11月
-
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS 78(3) S824-S824 2010年
-
Proceedings of the Sixteenth EGS User's Meeting in Japan 8-12 2009年11月
-
KEK Proceedings 2009-6,November 40-47 2009年11月
-
KEK Proceedings 61-66 2008年10月
-
医学物理 : 日本医学物理学会機関誌 = Japanese journal of medical physics : an official journal of Japan Society of Medical Physics 28 75-76 2008年4月1日
書籍等出版物
2講演・口頭発表等
41担当経験のある科目(授業)
22-
2025年 - 現在
-
2025年 - 現在
-
2025年 - 現在
-
2025年 - 現在
-
2024年 - 現在
共同研究・競争的資金等の研究課題
11-
日本学術振興会 科学研究費助成事業 2024年4月 - 2027年3月
-
2025年4月 - 2026年3月
-
令和6年度 成長型中小企業等研究開発支援事業 2024年 - 2026年
-
藤田医科大学 教員研究助成費(若手) 2024年4月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2022年4月 - 2025年3月
その他
2-
放射線線量率に対する細胞生存率計測のための多様な種類の細胞 *本研究ニーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進セン ター(fuji-san@fujita-hu.ac.jp)まで
-
放射線線量計測における検出器の応答特性検証技術 ガラス線量計、半導体検出器等で検証を実施 (Yasui et al; Physica Medica 81 147-154 2021年1月, IJRR 19((2)) 281-289 2021年4月, Nagata et al; JACMP 22(8) 265-272 2021年8月) *本研究ニーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進セン ター(fuji-san@fujita-hu.ac.jp)まで