Noriyuki Kadoya, Kazuhiro Arai, Shohei Tanaka, Yuto Kimura, Ryota Tozuka, Keisuke Yasui, Naoki Hayashi, Yoshiyuki Katsuta, Haruna Takahashi, Koki Inoue, Keiichi Jingu
Radiological physics and technology 2024年9月10日
This study aimed to evaluate the performance for answering the Japanese medical physicist examination and providing the benchmark of knowledge about medical physics in language-generative AI with large language model. We used questions from Japan's 2018, 2019, 2020, 2021 and 2022 medical physicist board examinations, which covered various question types, including multiple-choice questions, and mainly focused on general medicine and medical physics. ChatGPT-3.5 and ChatGPT-4.0 (OpenAI) were used. We compared the AI-based answers with the correct ones. The average accuracy rates were 42.2 ± 2.5% (ChatGPT-3.5) and 72.7 ± 2.6% (ChatGPT-4), showing that ChatGPT-4 was more accurate than ChatGPT-3.5 [all categories (except for radiation-related laws and recommendations/medical ethics): p value < 0.05]. Even with the ChatGPT model with higher accuracy, the accuracy rates were less than 60% in two categories; radiation metrology (55.6%), and radiation-related laws and recommendations/medical ethics (40.0%). These data provide the benchmark for knowledge about medical physics in ChatGPT and can be utilized as basic data for the development of various medical physics tools using ChatGPT (e.g., radiation therapy support tools with Japanese input).