研究者業績

國澤 和生

クニサワ カズオ  (kunisawa kazuo)

基本情報

所属
藤田医科大学 大学院医療科学研究科 レギュラトリーサイエンス分野 准教授
学位
博士(理学)(総合研究大学院大学)

研究者番号
60780773
J-GLOBAL ID
201701017137609291
researchmap会員ID
7000020076

外部リンク

学歴

 2

論文

 26
  • Hisayoshi Kubota, Kazuo Kunisawa, Masaya Hasegawa, Hitomi Kurahashi, Kazuhiro Kagotani, Yuki Fujimoto, Akihito Hayashi, Ryoji Sono, Takehiko Tsuji, Kuniaki Saito, Toshitaka Nabeshima, Akihiro Mouri
    Neurochemistry international 180 105858-105858 2024年9月12日  
    High salt (HS) intake induces hypertension and cognitive impairment. Preventive strategies include against dietary supplements. Soybean lecithin is a widely used phospholipid supplement. Lysolecithin is important in cell signaling, digestion, and absorption. This study aimed to investigate the effects of lysophosphatidylcholine containing >70% of the total phospholipids (LPC70), on hypertension and cognitive impairment induced in mice by HS intake. Mice were provided with HS solution (2% NaCl in drinking water) with or without LPC70 for 12 weeks. Blood pressure, cognitive function, and inflammatory response of intestine were determined. Hypertension and impaired object recognition memory induced by HS intake were implicated with increased inducible nitric oxide synthase in the small intestine and tau hyperphosphorylation in the prefrontal cortex. LPC70 treatment prevented cognitive impairment by suppressing inducible nitric oxide synthase and tau hyperphosphorylation. LPC70 may be valuable as a functional food component in preventing HS-induced cognitive impairment.
  • Kazuo Kunisawa†, Mitsuki Hara, Koyo Yoshidomi, Yuki Kon, Yasuko Yamamoto, Suwako Fujigaki, Bolati Wulaer, Aika Kosuge, Moeka Tanabe, Sei Saitoh, Kazuo Takahashi, Kuniaki Saito, Toshitaka Nabeshima, Akihiro Mouri†, †corresponding authors
    Molecular Neurobiology 2024年6月3日  査読有り筆頭著者責任著者
  • Hitomi Kurahashi, Kazuo Kunisawa, Akihiro Mouri
    Methods in Molecular Biology 331-340 2024年4月18日  査読有り
  • Aika Kosuge*, Kazuo Kunisawa*, Tsubasa Iida, Bolati Wulaer, Tomoki Kawai, Moeka Tanabe, Kuniaki Saito, Toshitaka Nabeshima, Akihiro Mouri, *Equally contributing authors
    Journal of Neurochemistry 2024年3月18日  査読有り筆頭著者
    Abstract Stressful life events contribute to the onset of major depressive disorder (MDD). We recently demonstrated abnormalities in ubiquitination in the pathophysiology of MDD. However, the underlying molecular mechanisms remain unclear. We investigated the involvement of the ubiquitination system‐mediated glutamatergic dysfunction in social impairment induced by chronic social defeat stress (CSDS). Adult C57BL/6J mice were exposed to aggressor ICR male mice for 10 consecutive days. Social impairment was induced by CSDS in the social interaction test 1 days after the last stress exposure. In terms of brain microdialysis, CSDS reduced depolarization‐evoked glutamate release in the prefrontal cortex (PFC), which was reversed by a glutamate transporter 1 (GLT‐1) inhibitor. Interestingly, the expression of ubiquitinated, but not total GLT‐1, was decreased in the PFC of mice exposed to CSDS. The expression of neural precursor cells expressing developmentally downregulated gene 4‐like (Nedd4L: E3 ligase for GLT‐1), and ubiquitin‐conjugating enzyme E2D2 (Ube2d2: E2 ubiquitin‐conjugating enzyme for Nedd4L) was also reduced in CSDS mice. Furthermore, the downregulation of the Nedd4L‐GLT‐1 ubiquitination pathway decreased SIT ratio, but up‐regulation increased it even in non‐CSDS mice. Taken together, the decrease in GLT‐1 ubiquitination may reduce the release of extracellular glutamate induced by high‐potassium stimulation, which may lead to social impairment, while we could not find differences in GLT‐1 ubiquitination between susceptible and resistant CSDS mice. In conclusion, GLT‐1 ubiquitination could play a crucial role in the pathophysiology of MDD and is an attractive target for the development of novel antidepressants.
  • Masaki Ishikawa, Yasuko Yamamoto, Bolati Wulaer, Kazuo Kunisawa, Hidetsugu Fujigaki, Tatsuya Ando, Hiroki Kimura, Itaru Kushima, Yuko Arioka, Youta Torii, Akihiro Mouri, Norio Ozaki, Toshitaka Nabeshima, Kuniaki Saito
    The FEBS journal 291(5) 945-964 2024年3月  査読有り
    Indoleamine 2,3-dioxygenase 2 (IDO2) is an enzyme of the tryptophan-kynurenine pathway that is constitutively expressed in the brain. To provide insight into the physiological role of IDO2 in the brain, behavioral and neurochemical analyses in IDO2 knockout (KO) mice were performed. IDO2 KO mice showed stereotyped behavior, restricted interest and social deficits, traits that are associated with behavioral endophenotypes of autism spectrum disorder (ASD). IDO2 was colocalized immunohistochemically with tyrosine-hydroxylase-positive cells in dopaminergic neurons. In the striatum and amygdala of IDO2 KO mice, decreased dopamine turnover was associated with increased α-synuclein level. Correspondingly, levels of downstream dopamine D1 receptor signaling molecules such as brain-derived neurotrophic factor and c-Fos positive proteins were decreased. Furthermore, decreased abundance of ramified-type microglia resulted in increased dendritic spine density in the striatum of IDO2 KO mice. Both chemogenetic activation of dopaminergic neurons and treatment with methylphenidate, a dopamine reuptake inhibitor, ameliorated the ASD-like behavior of IDO2 KO mice. Sequencing analysis of exon regions in IDO2 from 309 ASD samples identified a rare canonical splice site variant in one ASD case. These results suggest that the IDO2 gene is, at least in part, a factor closely related to the development of psychiatric disorders.

主要なMISC

 13

主要な講演・口頭発表等

 121

主要な担当経験のある科目(授業)

 20

主要な共同研究・競争的資金等の研究課題

 20

産業財産権

 7