医学部

野村 昌彦

Masahiko Nomura

基本情報

所属
藤田医科大学 医学部 放射線診断学講座
学位
医学博士(藤田保健衛生大大学大学院)

J-GLOBAL ID
201801017634922600
researchmap会員ID
7000023639

論文

 4
  • Minami Furuta, Hirotaka Ikeda, Satomu Hanamatsu, Kaori Yamamoto, Maiko Shinohara, Masato Ikedo, Masao Yui, Hiroyuki Nagata, Masahiko Nomura, Takahiro Ueda, Yoshiyuki Ozawa, Hiroshi Toyama, Yoshiharu Ohno
    European Journal of Radiology 171 2024年2月  
    Purpose: The purpose of this in vivo study was to determine the effect of reverse encoding direction (RDC) on apparent diffusion coefficient (ADC) measurements and its efficacy for improving image quality and diagnostic performance for differentiating malignant from benign tumors on head and neck diffusion-weighted imaging (DWI). Methods: Forty-eight patients with head and neck tumors underwent DWI with and without RDC and pathological examinations. Their tumors were then divided into two groups: malignant (n = 21) and benign (n = 27). To determine the utility of RDC for DWI, the difference in the deformation ratio (DR) between DWI and T2-weighted images of each tumor was determined for each tumor area. To compare ADC measurement accuracy of DWIs with and without RDC for each patient, ADC values for tumors and spinal cord were determined by using ROI measurements. To compare DR and ADC between two methods, Student's t-tests were performed. Then, ADC values were compared between malignant and benign tumors by Student's t-test on each DWI. Finally, sensitivity, specificity and accuracy were compared by means of McNemar's test. Results: DR of DWI with RDC was significantly smaller than that without RDC (p < 0.0001). There were significant differences in ADC between malignant and benign lesions on each DWI (p < 0.05). However, there were no significant difference of diagnostic accuracy between the two DWIs (p > 0.05). Conclusion: RDC can improve image quality and distortion of DWI and may have potential for more accurate ADC evaluation and differentiation of malignant from benign head and neck tumors.
  • Yoshiharu Ohno, Takeshi Yoshikawa, Daisuke Takenaka, Hisanobu Koyama, Kota Aoyagi, Masao Yui, Yuka Oshima, Nayu Hamabuchi, Yumi Tanaka, Chika Shigemura, Seiichiro Oota, Masahiko Nomura, Kazuhiro Murayama, Yoshitaka Inui, Kaoru Kikukawa, Hiroshi Toyama
    American Journal of Roentgenology 218(5) 899-908 2022年5月  
    BACKGROUND. Whole-body MRI and FDG PET/MRI have shown encouraging results for staging of thoracic malignancy but are poorly studied for staging of small cell lung cancer (SCLC). OBJECTIVE. The purpose of our study was to compare the performance of conventional staging tests, FDG PET/CT, whole-body MRI, and FDG PET/MRI for staging of SCLC. METHODS. This prospective study included 98 patients (64 men, 34 women; median age, 74 years) with SCLC who underwent conventional staging tests (brain MRI; neck, chest, and abdominopelvic CT; and bone scintigraphy), FDG PET/CT, and whole-body MRI within 2 weeks before treatment; coregistered FDG PET/MRI was generated. Two nuclear medicine physicians independently reviewed conventional tests and FDG PET/CT examinations in separate sessions, and two chest radiologists independently reviewed whole-body MRI and FDG PET/MRI examinations in separate sessions. Readers assessed T, N, and M categories; TNM stage; and Veterans Administration Lung Cancer Study Group (VALSG) stage. Reader pairs subsequently reached consensus. Stages determined clinically during tumor board sessions served as the reference standard. RESULTS. Accuracy for T category was higher (p < .05) for whole-body MRI (94.9%) and FDG PET/MRI (94.9%) than for FDG PET/CT (85.7%). Accuracy for N category was higher (p < .05) for whole-body MRI (84.7%), FDG PET/MRI (83.7%), and FDG PET/CT (81.6%) than for conventional staging tests (75.5%). Accuracy for M category was higher (p < .05) for whole-body MRI (94.9%), FDG PET/MRI (94.9%), and FDG PET/CT (94.9%) than for conventional staging tests (84.7%). Accuracy for TNM stage was higher (p < .05) for whole-body MRI (88.8%) and FDG PET/MRI (86.7%) than for FDG PET/CT (77.6%) and conventional staging tests (72.4%). Accuracy for VALSG stage was higher (p < .05) for whole-body MRI (95.9%), FDG PET/MRI (95.9%), and FDG PET/CT (98.0%) than for conventional staging tests (82.7%). Interobserver agreement, expressed as kappa coefficients, ranged from 0.81 to 0.94 across imaging tests and staging endpoints. CONCLUSION. FDG PET/CT, whole-body MRI, and coregistered FDG PET/MRI outperformed conventional tests for various staging endpoints in patients with SCLC. Whole-body MRI and FDG PET/MRI outperformed FDG PET/CT for T category and thus TNM stage, indicating the utility of MRI for assessing extent of local invasion in SCLC. CLINICAL IMPACT. Incorporation of either MRI approach may improve initial staging evaluation in SCLC.
  • Nayu Hamabuchi, Hidekazu Hattori, Tetsuya Tsukamoto, Masahiko Nomura, Seiichiro Ota, Yoshitaka Inui, Kaoru Kikukawa, Kazuyoshi Imaizumi, Masashi Kondo, Yasushi Hoshikawa, Hiroshi Toyama, Yoshiharu Ohno
    Journal of Thoracic Imaging 36(6) W109-W114 2021年11月1日  
  • Masahiko Nomura, Hiroshi Toyama, Hiromi Suzuki, Takashi Yamada, Kentaro Hatano, Alan A. Wilson, Kengo Ito, Makoto Sawada
    Annals of Nuclear Medicine 35(1) 8-16 2021年1月  
    Objective: The activation of microglia in various brain pathologies is accompanied by an increase in the expression of peripheral benzodiazepine receptor/18 kDa translocator protein (PBR/TSPO). However, whether activated microglia have a neuroprotective or neurotoxic effect on neurons in the brain is yet to be determined. In this study, we investigated the ability of the novel PBR/TSPO ligand FEPPA to detect activated microglia in an animal model of primary neurotoxic microglia activation. Methods: [18F] FEPPA positron emission tomography (PET) imaging was performed before and after intraperitoneal administration of lipopolysaccharide (LPS) (LPS group) or saline (control group) in a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson’s disease. Images were compared between these groups. After imaging, the brains were collected, and the activated microglia at the disease sites were analyzed by the expression of inflammatory cytokines and immunohistochemistry staining. These results were then comparatively examined with those obtained by PET imaging. Results: In the unilateral 6-OHDA lesion rat model, the PBR/TSPO PET signal was significantly increased in the LPS group compared with the saline group. As the increased signal was observed 4 h after the injection, we considered it an acute response to brain injury. In the post-imaging pathological examination, activated microglia were found to be abundant at the site where strong signals were detected, and the expression of the inflammatory cytokines TNF-α and IL-1β was increased. Intraperitoneal LPS administration further increased the expression of inflammatory cytokines, and the PBR/TSPO PET signal increased concurrently. The increase in inflammatory cytokine expression correlated with enhanced signal intensity. Conclusions: PET signal enhancement by PBR/TSPO at the site of brain injury correlated with the activation of microglia and production of inflammatory cytokines. Furthermore, because FEPPA enables the detection of neurotoxic microglia on PET images, we successfully constructed a novel PET detection system that can monitor neurodegenerative diseases.