研究者業績
基本情報
学歴
4-
- 1972年
-
- 1972年
-
- 1967年
-
- 1967年
委員歴
2-
1987年
受賞
5-
2020年11月
論文
250-
日本皮膚科学会雑誌 134(12) 3017-3034 2024年11月
-
International Journal of Molecular Sciences 2024年9月17日
-
Zoological Science 41(5) 2024年7月11日
-
Pigment Cell & Melanoma Research 2024年7月
-
Journal of Dermatological Science 2024年6月
-
Pigment Cell & Melanoma Research 2024年5月27日
-
Journal of Ornithology 2024年4月
-
Pigment Cell & Melanoma Research 2024年3月
-
The Science of Nature 111(1) 2024年2月1日
-
International journal of molecular sciences 24(23) 2023年11月27日Superficial discolored spots on Atlantic salmon (Salmo salar) fillets are a serious quality problem for commercial seafood farming. Previous reports have proposed that the black spots (called melanized focal changes (MFCs)) may be melanin, but no convincing evidence has been reported. In this study, we performed chemical characterization of MFCs and of red pigment (called red focal changes (RFCs)) from salmon fillets using alkaline hydrogen peroxide oxidation and hydroiodic acid hydrolysis. This revealed that the MFCs contain 3,4-dihydroxyphenylalanine (DOPA)-derived eumelanin, whereas the RFCs contain only trace amounts of eumelanin. Therefore, it is probable that the black color of the MFCs can be explained by the presence of eumelanin from accumulated melanomacrophages. For the red pigment, we could not find a significant signature of either eumelanin or pheomelanin; the red color is probably predominantly hemorrhagic in nature. However, we found that the level of pigmentation in RFCs increased together with some melanogenic metabolites. Comparison with a "mimicking experiment", in which a mixture of a salmon homogenate + DOPA was oxidized with tyrosinase, suggested that the RFCs include conjugations of DOPAquinone and/or DOPAchrome with salmon muscle tissue proteins. In short, the results suggest that melanogenic metabolites in MFCs and RFCs derive from different chemical pathways, which would agree with the two different colorations deriving from distinct cellular origins, namely melanomacrophages and red blood cells, respectively.
-
Nature communications 14(1) 5651-5651 2023年10月6日Melanin pigments play a critical role in physiological processes and shaping animal behaviour. Fossil melanin is a unique resource for understanding the functional evolution of melanin but the impact of fossilisation on molecular signatures for eumelanin and, especially, phaeomelanin is not fully understood. Here we present a model for the chemical taphonomy of fossil eumelanin and phaeomelanin based on thermal maturation experiments using feathers from extant birds. Our results reveal which molecular signatures are authentic signals for thermally matured eumelanin and phaeomelanin, which signatures are artefacts derived from the maturation of non-melanin molecules, and how these chemical data are impacted by sample preparation. Our model correctly predicts the molecular composition of eumelanins in diverse vertebrate fossils from the Miocene and Cretaceous and, critically, identifies direct molecular evidence for phaeomelanin in these fossils. This taphonomic framework adds to the geochemical toolbox that underpins reconstructions of melanin evolution and of melanin-based coloration in fossil vertebrates.
-
The Journal of investigative dermatology 143(10) 2019-2029 2023年10月cAMP signaling is a well-established regulator of melanin synthesis. Two distinct cAMP signaling pathways-the transmembrane adenylyl cyclase pathway, activated primarily by the MC1R, and the soluble adenylyl cyclase (sAC) pathway-affect melanin synthesis. The sAC pathway affects melanin synthesis by regulating melanosomal pH, and the MC1R pathway affects melanin synthesis by regulating gene expression and post-translational modifications. However, whether MC1R genotype affects melanosomal pH is poorly understood. We now report that loss of function MC1R does not affect melanosomal pH. Thus, sAC signaling appears to be the only cAMP signaling pathway that regulates melanosomal pH. We also addressed whether MC1R genotype affects sAC-dependent regulation of melanin synthesis. Although sAC loss of function in wild-type human melanocytes stimulates melanin synthesis, sAC loss of function has no effect on melanin synthesis in MC1R nonfunctional human and mouse melanocytes or skin and hair melanin in e/e mice. Interestingly, activation of transmembrane adenylyl cyclases, which increases epidermal eumelanin synthesis in e/e mice, leads to enhanced production of eumelanin in sAC-knockout mice relative to that in sAC wild-type mice. Thus, MC1R- and sAC-dependent cAMP signaling pathways define distinct mechanisms that regulate melanosomal pH and pigmentation.
-
Progress in neurobiology 226 102463-102463 2023年7月
-
International Journal of Molecular Sciences 2023年5月5日
-
PLoS genetics 19(4) e1010724 2023年4月The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin.
-
Pigment Cell & Melanoma Research 2023年4月
-
Journal of Neural Transmission 2023年3月20日Abstract The dark pigment neuromelanin (NM) is abundant in cell bodies of dopamine (DA) neurons in the substantia nigra (SN) and norepinephrine (NE) neurons in the locus coeruleus (LC) in the human brain. During the progression of Parkinson’s disease (PD), together with the degeneration of the respective catecholamine (CA) neurons, the NM levels in the SN and LC markedly decrease. However, questions remain among others on how NM is associated with PD and how it is synthesized. The biosynthesis pathway of NM in the human brain has been controversial because the presence of tyrosinase in CA neurons in the SN and LC has been elusive. We propose the following NM synthesis pathway in these CA neurons: (1) Tyrosine is converted by tyrosine hydroxylase (TH) to L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted by aromatic L-amino acid decarboxylase to DA, which in LC neurons is converted by dopamine β-hydroxylase to NE; (2) DA or NE is autoxidized to dopamine quinone (DAQ) or norepinephrine quinone (NEQ); and (3) DAQ or NEQ is converted to eumelanic NM (euNM) and pheomelanic NM (pheoNM) in the absence and presence of cysteine, respectively. This process involves proteins as cysteine source and iron. We also discuss whether the NM amounts per neuromelanin-positive (NM+) CA neuron are higher in PD brain, whether NM quantitatively correlates with neurodegeneration, and whether an active lifestyle may reduce NM formation.
-
International Journal of Molecular Sciences 2023年3月9日
-
International Journal of Molecular Sciences 2023年2月24日
-
Progress in neurobiology 102414-102414 2023年2月4日Neuromelanin (NM) in dopaminergic neurons of human substantia nigra (SN) has a melanic component that consists of pheomelanin and eumelanin moieties and has been proposed as a key factor contributing to dopaminergic neuron vulnerability in Parkinson's disease (PD). While eumelanin is considered as an antioxidant, pheomelanin and related oxidative stress are associated with compromised drug and metal ion binding and melanoma risk. Using postmortem SN from patients with PD or Alzheimer's disease (AD) and unaffected controls, we identified increased L-3,4-dihydroxyphenylalanine (DOPA) pheomelanin and increased ratios of dopamine (DA) pheomelanin markers to DA in PD SN compared to controls. Eumelanins derived from both DOPA and DA were reduced in PD group. In addition, we report an increase in DOPA pheomelanin relative to DA pheomelanin in PD SN. In AD SN, we observed unaltered melanin markers despite reduced DOPA compared to controls. Furthermore, synthetic DOPA pheomelanin induced neuronal cell death in vitro while synthetic DOPA eumelanin showed no significant effect on cell viability. Our findings provide insights into the different roles of pheomelanin and eumelanin in PD pathophysiology. We anticipate our study will lead to further investigations on pheomelanin and eumelanin individually as biomarkers and possibly therapeutic targets for PD.
-
Journal of neural transmission (Vienna, Austria : 1996) 130(1) 29-42 2023年1月Dopamine (DA) is a precursor of neuromelanin (NM) synthesized in the substantia nigra of the brain. NM is known to contain considerable levels of Fe and Cu. However, how Fe and Cu ions affect DA oxidation to DA-eumelanin (DA-EM) and modify its structure is poorly understood. EMs were prepared from 500 µM DA, dopaminechrome (DAC), or 5,6-dihydroxyindole (DHI). Autoxidation was carried out in the absence or presence of 50 µM Fe(II) or Cu(II) at pH 7.4 and 37 ℃. EMs were characterized by Soluene-350 solubilization analyzing absorbances at 500 nm (A500) and 650 nm (A650) and alkaline hydrogen peroxide oxidation (AHPO) yielding various pyrrole carboxylic acids. Pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA) served as a molecular marker of cross-linked DHI units. Importantly, Fe and Cu accelerated DA oxidation to DA-EM and DHI oxidation to DHI-EM several-fold, whereas these metals only weakly affected the production of DAC-EM. The A500 values indicated that DA-EM contains considerable portions of uncyclized DA units. Analysis of the A650/A500 ratios suggests that Fe and Cu caused some degradation of DHI units of DA-EM during 72-h incubation. Results with AHPO were consistent with the A500 values and additionally revealed that (1) DA-EM is less cross-linked than DAC-EM and DHI-EM and (2) Fe and Cu promote cross-linking of DHI units. In conclusion, Fe and Cu not only accelerate the oxidation of DA to DA-EM but also promote cross-linking and degradation of DHI units. These results help to understand how Fe and Cu in the brain affect the production and properties of NM.
-
International journal of molecular sciences 23(22) 2022年11月21日In a previous study, we observed that the hair color of Japanese females darkens with age and that the causes of this are the increase in melanosome size, the amount of melanin, and the mol% of 5,6-dihydroxyindole (DHI) which has a high absorbance. In this study, we extended the same analyses to male hair to examine the sex differences in hair color, melanin composition, and melanosome morphology. Male hair also tended to darken with age, but it was darker than female hair in those of younger ages. Although there was no age dependence of DHI mol% in male hair, as with female hair, the melanosomes' sizes enlarged with age, the total melanin amount increased, and these findings were correlated with hair color. The analyses, considering age dependence, revealed that there were significant sex differences in the ratio of absorbance of dissolved melanin at the wavelength of 650 nm to 500 nm, in pheomelanin mol%, and in melanosome morphology parameters such as the minor axis. This may be the cause of the sex differences in hair color. Furthermore, the factors related to hair color were analyzed using all the data of the male and female hairs. The results suggested that total melanin amount, pheomelanin mol%, and DHI mol% correlated with hair color.
-
Cancers 14(22) 2022年11月14日Malignant melanoma is one of the most malignant of all cancers. Melanoma occurs at the epidermo-dermal interface of the skin and mucosa, where small vessels and lymphatics are abundant. Consequently, from the onset of the disease, melanoma easily metastasizes to other organs throughout the body via lymphatic and blood circulation. At present, the most effective treatment method is surgical resection, and other attempted methods, such as chemotherapy, radiotherapy, immunotherapy, targeted therapy, and gene therapy, have not yet produced sufficient results. Since melanogenesis is a unique biochemical pathway that functions only in melanocytes and their neoplastic counterparts, melanoma cells, the development of drugs that target melanogenesis is a promising area of research. Melanin consists of small-molecule derivatives that are always synthesized by melanoma cells. Amelanosis reflects the macroscopic visibility of color changes (hypomelanosis). Under microscopy, melanin pigments and their precursors are present in amelanotic melanoma cells. Tumors can be easily targeted by small molecules that chemically mimic melanogenic substrates. In addition, small-molecule melanin metabolites are toxic to melanocytes and melanoma cells and can kill them. This review describes our development of chemo-thermo-immunotherapy based on the synthesis of melanogenesis-based small-molecule derivatives and conjugation to magnetite nanoparticles. We also introduce the other melanogenesis-related chemotherapy and thermal medicine approaches and discuss currently introduced targeted therapies with immune checkpoint inhibitors for unresectable/metastatic melanoma.
-
Journal of dermatological science 108(2) 77-86 2022年11月BACKGROUND: Chemical leukoderma is a skin depigmentation disorder induced through contact with certain chemicals, most of which have a p-substituted phenol structure similar to the melanin precursor tyrosine. The tyrosinase-catalyzed oxidation of phenols to highly reactive o-quinone metabolites is a critical step in inducing leukoderma through the production of melanocyte-specific damage and immunological responses. OBJECTIVE: Our aim was to find an effective method to evaluate the formation of o-quinone by human tyrosinase and subsequent cellular reactions. METHODS: Human tyrosinase-expressing 293T cells were exposed to various phenolic compounds, after which the reactive o-quinones generated were identified as adducts of cellular thiols. We further examined whether the o-quinone formation induces reductions in cellular GSH or viability. RESULTS: Among the chemicals tested, all 7 leukoderma-inducing phenols/catechol (rhododendrol, raspberry ketone, monobenzone, 4-tert-butylphenol, 4-tert-butylcatechol, 4-S-cysteaminylphenol and p-cresol) were oxidized to o-quinone metabolites and were detected as adducts of cellular glutathione and cysteine, leading to cellular glutathione reduction, whereas 2-S-cysteaminylphenol and 4-n-butylresorcinol were not. In vitro analysis using a soluble variant of human tyrosinase revealed a similar substrate-specificity. Some leukoderma-inducing phenols exhibited tyrosinase-dependent cytotoxicity in this cell model and in B16BL6 melanoma cells where tyrosinase expression was effectively modulated by siRNA knockdown. CONCLUSION: We developed a cell-based metabolite analytical method to detect human tyrosinase-catalyzed formation of o-quinone from phenolic compounds by analyzing their thiol-adducts. The detailed analysis of each metabolite was superior in sensitivity and specificity compared to cytotoxicity assays for detecting known leukoderma-inducing phenols, providing an effective strategy for safety evaluation of chemicals.
-
Cancers 14(20) 2022年10月13日TR1 and other selenoproteins have paradoxical effects in melanocytes and melanomas. Increasing selenoprotein activity with supplemental selenium in a mouse model of UV-induced melanoma prevents oxidative damage to melanocytes and delays melanoma tumor formation. However, TR1 itself is positively associated with progression in human melanomas and facilitates metastasis in melanoma xenografts. Here, we report that melanocytes expressing a microRNA directed against TR1 (TR1low) grow more slowly than control cell lines and contain significantly less melanin. This phenotype is associated with lower tyrosinase (TYR) activity and reduced transcription of tyrosinase-like protein-1 (TYRP1). Melanoma cells in which the TR1 gene (TXNRD1) was disrupted using Crispr/Cas9 showed more dramatic effects including the complete loss of the melanocyte-specific isoform of MITF; other MITF isoforms were unaffected. We provide evidence that TR1 depletion results in oxidation of MITF itself. This newly discovered mechanism for redox modification of MITF has profound implications for controlling both pigmentation and tumorigenesis in cells of the melanocyte lineage.
-
Journal of Investigative Dermatology 2022年9月
-
Pigment Cell & Melanoma Research 2022年8月7日
-
International Journal of Molecular Sciences 2022年6月9日
-
The Journal of clinical endocrinology and metabolism 2022年6月
-
International Journal of Molecular Sciences 23(8) 4176-4176 2022年4月10日
-
Regulatory toxicology and pharmacology : RTP 131 105157-105157 2022年3月12日Chemical leukoderma is an acquired depigmentation of the skin caused by repeated exposure to specific agents damaging to epidermal melanocytes. Case reports of chemical leukoderma have been associated with some consumer products. To date, there are no well-accepted approaches for evaluating and minimizing this risk. To this end, a framework is presented that evaluates the physical and chemical characteristics of compounds associated with chemical leukoderma and employs structure-activity relationship (SAR) read-across and predictive metabolism tools to determine whether a compound is at increased risk of evoking chemical leukoderma. In addition to in silico approaches, the testing strategy includes in chemico quinone formation and in vitro melanocyte cytotoxicity assays to dimension the risk as part of an overall weight of evidence approach to risk assessment. Cosmetic ingredients raspberry ketone, undecylenoyl phenylalanine, tocopheryl succinate, p-coumaric acid, resveratrol, resveratrol dimethyl ether, sucrose dilaurate, tranexamic acid, niacinamide and caffeic acid are evaluated in this framework and compared to positive controls rhododendrol and hydroquinone. Overall, this framework is considered an important step toward mitigating the risk of chemical leukoderma for compounds used in consumer products.
-
Proceedings of the Royal Society B: Biological Sciences 2022年1月12日
-
Journal of Investigative Dermatology 2022年1月
-
Pigment cell & melanoma research 2021年12月6日Oculocutaneous albinism (OCA) 6 is a non-syndromic type of OCA that has distinct ocular symptoms and variable cutaneous hypopigmentation. The causative gene of OCA6 is SLC24A5, which encodes NCKX5, a K+ -dependent Na+ /Ca2+ exchanger 5. NCKX5 is involved in the maturation of melanosomes, but its function is still unclear. In this study, we characterized a Japanese patient with OCA6. Genetic analysis revealed compound heterozygous variants in SLC24A5, c.590 + 1dupG and c.598G>A (p.G200R). To clarify the functional significance of the missense variant, we generated a knock-in (KI) mouse model carrying the mouse homolog of the G200R variant using the CRISPR/Cas9 system. Chemical analysis showed decreased amounts of eumelanin in the hair and skin of KI mice, while levels of benzothiazine units in pheomelanin were significantly increased in their hair. Retinal pigment was also decreased in KI mice. Notably, a histopathologic study revealed a significant pigment loss in the retinal pigment epithelium (RPE) but not in the choroid. Immunohistochemically, the expression of NCKX5 in the RPE was decreased but was maintained in the choroid of KI mice. These findings could explain the difference in phenotypic severity between eye symptoms and hypopigmentation in the skin/hair.
-
International Journal of Molecular Sciences 22 11751 2021年10月29日 査読有り
-
Photochemistry and Photobiology 2021年8月26日 査読有り
-
International journal of molecular sciences 22(17) 2021年8月24日Equol (7-hydroxy-3-(4'-hydroxyphenyl)-chroman, EQ), one of the major intestinally derived metabolites of daidzein, the principal isoflavane found in soybeans and most soy foods, has recently attracted increased interest as a health-beneficial compound for estrogen-dependent diseases. However, based on its structure with two p-substituted phenols, this study aimed to examine whether EQ is a substrate for tyrosinase and whether it produces o-quinone metabolites that are highly cytotoxic to melanocyte. First, the tyrosinase-catalyzed oxidation of EQ was performed, which yielded three EQ-quinones. They were identified after being reduced to their corresponding catechols with NaBH4 or L-ascorbic acid. The binding of the EQ-quinones to N-acetyl-L-cysteine (NAC), glutathione (GSH), and bovine serum albumin via their cysteine residues was then examined. NAC and GSH afforded two mono-adducts and one di-adduct, which were identified by NMR and MS analysis. It was also found that EQ was oxidized to EQ-di-quinone in cells expressing human tyrosinase. Finally, it was confirmed that the EQ-oligomer, the EQ oxidation product, exerted potent pro-oxidant activity by oxidizing GSH to the oxidized GSSG and concomitantly producing H2O2. These results suggest that EQ-quinones could be cytotoxic to melanocytes due to their binding to cellular proteins.
-
Cell 184(16) 4268-4283.e20 2021年8月
-
International Journal of Molecular Sciences 22 4465 2021年4月24日 査読有り
-
Pigment Cell & Melanoma Research 34 730-747 2021年3月9日 査読有り
-
Acta dermato-venereologica 101 adv00387 2021年2月 査読有り
-
Journal of Investigative Dermatology 141(7) 1810-1818.e6 2021年2月 査読有り
-
Journal of Synchrotron Radiation 28(1) 28-35 2021年1月1日A mid-infrared free-electron laser (MIR-FEL) is a synchrotron-radiation-based femto- to pico-second pulse laser. It has unique characteristics such as variable wavelengths in the infrared region and an intense pulse energy. So far, MIR-FELs have been utilized to perform multi-photon absorption reactions against various gas molecules and protein aggregates in physical chemistry and biomedical fields. However, the applicability of MIR-FELs for the structural analysis of solid materials is not well recognized in the analytical field. In the current study, an MIR-FEL is applied for the first time to analyse the internal structure of biological materials by using fossilized inks from cephalopods as the model sample. Two kinds of fossilized inks that were collected from different strata were irradiated at the dry state by tuning the oscillation wavelengths of the MIR-FEL to the phosphoryl stretching mode of hydroxyapatite (9.6 µm) and to the carbonyl stretching mode of melanin (5.8 µm), and the subsequent structural changes in those materials were observed by using infrared microscopy and far-infrared spectroscopy. The structural variation of these biological fossils is discussed based on the infrared-absorption spectral changes that were enhanced by the MIR-FEL irradiation, and the potential use of MIR-FELs for the structural evaluation of biomaterials is suggested.
-
International Journal of Molecular Sciences 22(1) 161-161 2020年12月26日Residual melanins have been detected in multimillion-year-old animal body fossils; however, confident identification and characterization of these natural pigments remain challenging due to loss of chemical signatures during diagenesis. Here, we simulate this post-burial process through artificial maturation experiments using three synthetic and one natural eumelanin exposed to mild (100 °C/100 bar) and harsh (250 °C/200 bar) environmental conditions, followed by chemical analysis employing alkaline hydrogen peroxide oxidation (AHPO) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Our results show that AHPO is sensitive to changes in the melanin molecular structure already during mild heat and pressure treatment (resulting, e.g., in increased C-C cross-linking), whereas harsh maturation leads to extensive loss of eumelanin-specific chemical markers. In contrast, negative-ion ToF-SIMS spectra are considerably less affected by mild maturation conditions, and eumelanin-specific features remain even after harsh treatment. Detailed analysis of ToF-SIMS spectra acquired prior to experimental treatment revealed significant differences between the investigated eumelanins. However, systematic spectral changes upon maturation reduced these dissimilarities, indicating that intense heat and pressure treatment leads to the formation of a common, partially degraded, eumelanin molecular structure. Our findings elucidate the complementary nature of AHPO and ToF-SIMS during chemical characterization of eumelanin traces in fossilized organismal remains.
-
International journal of molecular sciences 21(19) 2020年10月3日Melanin is an important phenolic skin pigment found throughout the animal kingdom. Tyrosine and its hydroxylated product dopa provide the starting material for melanin biosynthesis in all animals. Through a set of well-established reactions, they are converted to 5,6-dihydroxyindole (DHI) and DHI-2-carboxylic acid (DHICA). Oxidative polymerization of these two indoles produces the brown to black eumelanin pigment. The steps associated with these transformations are complicated by the extreme instability of the starting materials and the transient and highly reactive nature of the intermediates. We have used mass spectral studies to explore the nonenzymatic mechanism of oxidative transformation of DHI in water. Our results indicate the facile production of not only dimeric and trimeric products but also higher oligomeric forms of DHI upon exposure to air in solution, even under nonenzymatic conditions. Such instantaneous polymerization of DHI avoids toxicity to self-matter and ensures the much-needed deposition of melanin at (a) the wound site and (b) the infection site in arthropods. The rapid deposition of DHI melanin is advantageous for arthropods given their open circulatory system; the process limits blood loss during wounding and prevents the spread of parasites by encapsulating them in melanin, limiting the damage.
-
International Journal of Molecular Sciences 2020年9月15日 査読有り
MISC
210-
Nature communications 10(1) 2250-2250 2019年5月21日Recent progress has been made in paleontology with respect to resolving pigmentation in fossil material. Morphological identification of fossilized melanosomes has been one approach, while a second methodology using chemical imaging and spectroscopy has also provided critical information particularly concerning eumelanin (black pigment) residue. In this work we develop the chemical imaging methodology to show that organosulfur-Zn complexes are indicators of pheomelanin (red pigment) in extant and fossil soft tissue and that the mapping of these residual biochemical compounds can be used to restore melanin pigment distribution in a 3 million year old extinct mammal species (Apodemus atavus). Synchotron Rapid Scanning X-ray Fluorescence imaging showed that the distributions of Zn and organic S are correlated within this fossil fur just as in pheomelanin-rich modern integument. Furthermore, Zn coordination chemistry within this fossil fur is closely comparable to that determined from pheomelanin-rich fur and hair standards. The non-destructive methods presented here provide a protocol for detecting residual pheomelanin in precious specimens.
-
PIGMENT CELL & MELANOMA RESEARCH 30(1) 4-5 2017年1月
-
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY 72(5) AB29-AB29 2015年5月
-
JOURNAL OF INVESTIGATIVE DERMATOLOGY 133 S242-S242 2013年5月
書籍等出版物
4-
Oxford University Press, New York 1998年
-
Excerpta Medica International Congress Series 1096. International Symposium on Melanogenesis and Malignant Melanoma 1996年
-
CRC Press, Inc. 1993年