Institute for Comprehensive Medical Science

Hiroshi Ageta

  (上田 洋司)

Profile Information

Affiliation
Institute for Comprehensive Medical Science, Fujita Health University
Degree
理学博士(九州大学)

Researcher number
40416649
J-GLOBAL ID
201101022480531310
researchmap Member ID
B000004067

External link

2001年 九州大学大学院医学系研究科修了、理学博士。2001~2005年 三菱化学生命科学研究所・記憶形成精神疾患研究グループ・特別研究員。 2005~2009年 三菱化学生命科学研究所・分子加齢医学研究グループ・副主任研究員。2009年4~現在 藤田保健衛生大学・助教。2019年10月 藤田医科大学・講師。

Papers

 32
  • Yuka Terada, Kumi Obara, Yusuke Yoshioka, Takahiro Ochiya, Haruhiko Bito, Kunihiro Tsuchida, Hiroshi Ageta, Natsumi Ageta-Ishihara
    Biology open, 13(11), Nov 15, 2024  
    Exosomes are small extracellular vesicles (sEVs) secreted via multivesicular bodies (MVBs)/late endosomes and mediators of cell-cell communication. We previously reported a novel post-translational modification by ubiquitin-like 3 (UBL3). UBL3 is localized in MVBs and the plasma membrane and released outside as sEVs, including exosomes. Approximately 60% of proteins sorted in sEVs are affected by UBL3 and localized in various organelles, the plasma membrane, and the cytosol, suggesting that its dynamic movement in the cell before entering the MVBs. To examine the intracellular dynamics of UBL3, we constructed a sophisticated visualization system via fusing fluorescent timers that changed from blue to red form over time with UBL3 and by its expression under Tet-on regulation. Intriguingly, we found that after synthesis, UBL3 was initially distributed within the cytosol. Subsequently, UBL3 was localized to MVBs and the plasma membrane and finally showed predominant accumulation in MVBs. Furthermore, by super-resolution microscopy analysis, UBL3 was found to be associated with one of its substrates, α-tubulin, in the cytosol, and the complex was subsequently transported to MVBs. This spatiotemporal visualization system for UBL3 will form a basis for further studies to elucidate when and where UBL3 associates with its substrates/binding proteins before localization in MVBs.
  • Hiroshi Ageta, Tomoki Nishioka, Hisateru Yamaguchi, Kunihiro Tsuchida, Natsumi Ageta-Ishihara
    Molecular brain, 17(1) 57-57, Aug 15, 2024  
    Discovery of novel post-translational modifications provides new insights into changes in protein function, localization, and stability. They are also key elements in understanding disease mechanisms and developing therapeutic strategies. We have previously reported that ubiquitin-like 3 (UBL3) serves as a novel post-translational modifier that is highly expressed in the cerebral cortex and hippocampus, in addition to various other organs, and that 60% of proteins contained in small extracellular vesicles (sEVs), including exosomes, are influenced by UBL3. In this study, we generated transgenic mice expressing biotinylated UBL3 in the forebrain under control of the alpha-CaMKII promoter (Ubl3Tg/+). Western blot analysis revealed that the expression of UBL3 in the cerebral cortex and hippocampus was 6- to 7-fold higher than that in the cerebellum. Therefore, we performed immunoprecipitation of protein extracts from the cerebral cortex of Ubl3+/+ and Ubl3Tg/+ mice using avidin beads to comprehensively discover UBL3 interacting proteins, identifying 35 new UBL3 interacting proteins. Nine proteins were annotated as extracellular exosomes. Gene Ontology (GO) analysis suggested a new relationship between sEVs and RNA metabolism in neurodegenerative diseases. We confirmed the association of endogenous UBL3 with the RNA-binding proteins FUS and HPRT1-both listed in the Neurodegenerative Diseases Variation Database (NDDVD)-and with LYPLA1, which is involved in Huntington's disease, using immunoprecipitation (IP)-western blotting analysis. These UBL3 interacting proteins will accelerate the continued elucidation of sEV research about proteins regulated by novel post-translational modifications by UBL3 in the brain.
  • 上田洋司, 土田邦博
    生化学, 91(4) 514-518, Aug, 2019  
  • Hiroshi Ageta, Kunihiro Tsuchida
    Cellular and Molecular Life Sciences, Jul, 2019  Peer-reviewedInvited

Misc.

 22

Books and Other Publications

 7

Presentations

 17

Research Projects

 16

Social Activities

 2

Media Coverage

 18