医学部

湯浅 明子

ユアサ アキコ  (Akiko Yuasa)

基本情報

所属
藤田医科大学 医学部リハビリテーション医学Ⅰ講座 研究員

通称等の別名
山口 明子
研究者番号
30878468
ORCID ID
 https://orcid.org/0000-0003-1808-2369
J-GLOBAL ID
202001016186854551
researchmap会員ID
R000002243

論文

 17
  • Taisei Sugiyama, Shintaro Uehara, Akiko Yuasa, Kazuki Ushizawa, Jun Izawa, Yohei Otaka
    European journal of physical and rehabilitation medicine 2024年7月29日  
    BACKGROUND: Meta-learning is a metacognitive function for successful, efficient learning in various tasks. While it is possible that meta-learning is linked to functional recovery in stroke, it has not been investigated in previous clinical research on metacognition. AIM: Examine if individual meta-learning ability is associated with functional outcomes. DESIGN: Cohort study. SETTINGS: Rehabilitation ward in Fujita Health University Hospital. POPULATION: Twenty-nine hemiparetic people after stroke. METHODS: The study measured individual sensorimotor adaptation rate, meta-learning (acceleration of adaptation through training), and Functional Independence Measure (FIM) motor effectiveness, an index of functional outcome measuring improvement in proficiency of activity of daily living (ADL). Participants performed visuomotor adaptation training sessions with their less-affected arm. They made arm-reaching movements to hit a target with cursor feedback, which was occasionally rotated with regard to their hand positions, requiring them to change the movement direction accordingly. Initial adaptation rate and meta-learning were quantified from pre- and post-training tests. The relationship between these indices of adaptation ability and FIM motor effectiveness was examined by multiple linear regression analyses. RESULTS: One participant was excluded before data collection in the motor task. In the remaining 28 individuals, the regression analyses revealed that FIM motor effectiveness positively correlated with meta-learning (µ=0.90, P=0.008), which was attenuated by age (µ=-0.015, P=0.005), but not with initial adaptation rate (P=0.08). Control analyses suggested that this observed association between FIM motor effectiveness and meta-learning was not mediated by patients' demographics or stroke characteristics. CONCLUSIONS: This study demonstrates that those who can accelerate adaptation through training are likely to improve ADL, suggesting that meta-learning may be linked with functional outcomes in some stroke individuals. Meta-learning may enable the brain to keep (re-)learning motor skills when motor functions change abruptly due to stroke and neural recovery, thereby associated with improvement in ADL. CLINICAL REHABILITATION IMPACT: Meta-learning is part of metacognitive functions that is positively associated with functional outcomes.
  • Akiko Yuasa, Shintaro Uehara, Kazuki Ushizawa, Sachiko Kodera, Norika Arai, Akimasa Hirata, Yohei Otaka
    Frontiers in Neuroscience 18 2024年2月27日  
    The application of 28 GHz millimeter-wave is prevalent owing to the global spread of fifth-generation wireless communication systems. Its thermal effect is a dominant factor which potentially causes pain and tissue damage to the body parts exposed to the millimeter waves. However, the threshold of this thermal sensation, that is, the degree of change in skin temperature from the baseline at which the first subjective response to the thermal effects of the millimeter waves occurs, remains unclear. Here, we investigated the thermal sensation threshold and assessed its reliability when exposed to millimeter waves. Twenty healthy adults were exposed to 28 GHz millimeter-wave on their left middle fingertip at five levels of antenna input power: 0.2, 1.1, 1.6, 2.1, and 3.4 W (incident power density: 27–399 mW/cm2). This measurement session was repeated twice on the same day to evaluate the threshold reliability. The intraclass correlation coefficient (ICC) and Bland–Altman analysis were used as proxies for the relative and absolute reliability, respectively. The number of participants who perceived a sensation during the two sessions at each exposure level was also counted as the perception rate. Mean thermal sensation thresholds were within 0.9°C–1.0°C for the 126–399 mW/cm2 conditions, while that was 0.2°C for the 27 mW/cm2 condition. The ICCs for the threshold at 27 and 126 mW/cm2 were interpreted as poor and fair, respectively, while those at higher exposure levels were moderate to substantial. Apart from a proportional bias in the 191 mW/cm2 condition, there was no fixed bias. All participants perceived a thermal sensation at 399 mW/cm2 in both sessions, and the perception rate gradually decreased with lower exposure levels. Importantly, two-thirds of the participants answered that they felt a thermal sensation in both or one of the sessions at 27 mW/cm2, despite the low-temperature increase. These results suggest that the thermal sensation threshold is around 1.0°C, consistent across exposure levels, while its reliability increases with higher exposure levels. Furthermore, the perception of thermal sensation may be inherently ambiguous owing to the nature of human perception.
  • Kazuki Ito, Shintaro Uehara, Akiko Yuasa, Kazuki Ushizawa, Shigeo Tanabe, Yohei Otaka
    Annals of Medicine 2024年1月31日  査読有り
  • Yota Obayashi, Shintaro Uehara, Akiko Yuasa, Yohei Otaka
    Frontiers in behavioral neuroscience 18 1420361-1420361 2024年  
    INTRODUCTION: Smiling during conversation occurs interactively between people and is known to build good interpersonal relationships. However, whether and how much the amount that an individual smiles is influenced by the other person's smile has remained unclear. This study aimed to quantify the amount of two individuals' smiles during conversations and investigate the dependency of one's smile amount (i.e., intensity and frequency) on that of the other. METHOD: Forty participants (20 females) engaged in three-minute face-to-face conversations as speakers with a listener (male or female), under three conditions, where the amount of smiling response by listeners was controlled as "less," "moderate," and "greater." The amount of the smiles was quantified based on their facial movements through automated facial expression analysis. RESULTS: The results showed that the amount of smiling by the speaker changed significantly depending on the listener's smile amount; when the listeners smiled to a greater extent, the speakers tended to smile more, especially when they were of the same gender (i.e., male-male and female-female pairs). Further analysis revealed that the smiling intensities of the two individuals changed in a temporally synchronized manner. DISCUSSION: These results provide quantitative evidence for the dependence of one's smile on the other's smile, and the differential effect between gender pairs.
  • Shintaro Uehara, Akiko Yuasa, Kazuki Ushizawa, Shin Kitamura, Kotaro Yamazaki, Eri Otaka, Yohei Otaka
    Journal of neurophysiology 2023年9月5日  
    Arm reaching is often impaired in individuals with stroke. Nonetheless, how aiming directions influence reaching performance and how such differences change with motor recovery over time remain unclear. Here, we elucidated kinematic parameters of reaching toward various directions in people with post-stroke hemiparesis in the sub-acute phase. A total of 13 and 15 participants with mild and moderate-to-severe hemiparesis, respectively, performed horizontal reaching in eight directions with their affected and unaffected sides using an exoskeleton robotic device at admission and discharge. The movement time, path length, and number of velocity peaks were computed for the mild group (participants able to reach toward all eight directions). Additionally, the total amount of displacement (i.e., movement quantity) toward two simplified directions (mediolateral or anteroposterior) was evaluated for the moderate-to-severe group (participants who showed difficulty in completing the reaching task). Motor recovery was evaluated using the Fugl-Meyer Assessment.The mild group exhibited decreases in movement parameters when reaching in the anteroposterior direction, irrespective of the side of the arm or motor recovery achieved. The moderate-to-severe group exhibited less movement toward the anteroposterior direction than toward the mediolateral direction at admission; however, this direction-dependent bias in movement quantity decreased, with the movement expanding toward the anteroposterior direction with motor recovery at discharge. These results suggest that direction-dependent differences in the quality and quantity of reaching performance exist in people after stroke, regardless of the presence or severity of hemiparesis. This highlights the need to consider the task work area when designing rehabilitative training.

共同研究・競争的資金等の研究課題

 3