研究者業績

船橋 靖広

フナハシ ヤスヒロ  (Yasuhiro Funahashi)

基本情報

所属
藤田医科大学 医科学研究センター 神経・腫瘍のシグナル解析プロジェクト研究部門 講師
(兼任)精神・神経病態解明センター 細胞生物学部門 講師
名古屋大学大学院医学系研究科 神経情報薬理学講座 非常勤講師
学位
博士(医学)(2014年3月 名古屋大学)

研究者番号
00749913
J-GLOBAL ID
201101096079196642
researchmap会員ID
B000003420

論文

 31
  • Yasuhiro Funahashi, Rijwan Uddin Ahammad, Xinjian Zhang, Emran Hossen, Masahiro Kawatani, Shinichi Nakamuta, Akira Yoshimi, Minhua Wu, Huanhuan Wang, Mengya Wu, Xu Li, Md Omar Faruk, Md Hasanuzzaman Shohag, You-Hsin Lin, Daisuke Tsuboi, Tomoki Nishioka, Keisuke Kuroda, Mutsuki Amano, Yukihiko Noda, Kiyofumi Yamada, Kenji Sakimura, Taku Nagai, Takayuki Yamashita, Shigeo Uchino, Kozo Kaibuchi
    Science signaling 17(853) eado9852 2024年9月10日  査読有り筆頭著者
    Structural plasticity of dendritic spines in the nucleus accumbens (NAc) is crucial for learning from aversive experiences. Activation of NMDA receptors (NMDARs) stimulates Ca2+-dependent signaling that leads to changes in the actin cytoskeleton, mediated by the Rho family of GTPases, resulting in postsynaptic remodeling essential for learning. We investigated how phosphorylation events downstream of NMDAR activation drive the changes in synaptic morphology that underlie aversive learning. Large-scale phosphoproteomic analyses of protein kinase targets in mouse striatal/accumbal slices revealed that NMDAR activation resulted in the phosphorylation of 194 proteins, including RhoA regulators such as ARHGEF2 and ARHGAP21. Phosphorylation of ARHGEF2 by the Ca2+-dependent protein kinase CaMKII enhanced its RhoGEF activity, thereby activating RhoA and its downstream effector Rho-associated kinase (ROCK/Rho-kinase). Further phosphoproteomic analysis identified 221 ROCK targets, including the postsynaptic scaffolding protein SHANK3, which is crucial for its interaction with NMDARs and other postsynaptic scaffolding proteins. ROCK-mediated phosphorylation of SHANK3 in the NAc was essential for spine growth and aversive learning. These findings demonstrate that NMDAR activation initiates a phosphorylation cascade crucial for learning and memory.
  • Takayuki Kannon, Satoshi Murashige, Tomoki Nishioka, Mutsuki Amano, Yasuhiro Funahashi, Daisuke Tsuboi, Yukie Yamahashi, Taku Nagai, Kozo Kaibuchi, Junichiro Yoshimoto
    Frontiers in Molecular Neuroscience 17 2024年4月2日  査読有り
    Protein phosphorylation, a key regulator of cellular processes, plays a central role in brain function and is implicated in neurological disorders. Information on protein phosphorylation is expected to be a clue for understanding various neuropsychiatric disorders and developing therapeutic strategies. Nonetheless, existing databases lack a specific focus on phosphorylation events in the brain, which are crucial for investigating the downstream pathway regulated by neurotransmitters. To overcome the gap, we have developed a web-based database named “Kinase-Associated Neural PHOspho-Signaling (KANPHOS).” This paper presents the design concept, detailed features, and a series of improvements for KANPHOS. KANPHOS is designed to support data-driven research by fulfilling three key objectives: (1) enabling the search for protein kinases and their substrates related to extracellular signals or diseases; (2) facilitating a consolidated search for information encompassing phosphorylated substrate genes, proteins, mutant mice, diseases, and more; and (3) offering integrated functionalities to support pathway and network analysis. KANPHOS is also equipped with API functionality to interact with external databases and analysis tools, enhancing its utility in data-driven investigations. Those key features represent a critical step toward unraveling the complex landscape of protein phosphorylation in the brain, with implications for elucidating the molecular mechanisms underlying neurological disorders. KANPHOS is freely accessible to all researchers at https://kanphos.jp.
  • Yukie Yamahashi, Daisuke Tsuboi, Yasuhiro Funahashi, Kozo Kaibuchi
    Expert review of proteomics 2023年10月3日  査読有り
    INTRODUCTION: Since the emergence of the cholinergic hypothesis of Alzheimer's disease (AD), acetylcholine has been viewed as a mediator of learning and memory. Donepezil improves AD-associated learning deficits and memory loss by recovering brain acetylcholine levels. However, it is associated with side effects due to global activation of acetylcholine receptors. Muscarinic acetylcholine receptor M1 (M1R), a key mediator of learning and memory, has been an alternative target. The importance of targeting a specific pathway downstream of M1R has recently been recognized. Elucidating signaling pathways beyond M1R that lead to learning and memory holds important clues for AD therapeutic strategies. AREAS COVERED: This review first summarizes the role of acetylcholine in aversive learning, one of the outputs used for preliminary AD drug screening. It then describes the phosphoproteomic approach focused on identifying acetylcholine intracellular signaling pathways leading to aversive learning. Finally, the intracellular mechanism of donepezil and its effect on learning and memory is discussed. EXPERT OPINION: The elucidation of signaling pathways beyond M1R by phosphoproteomic approach offers a platform for understanding the intracellular mechanism of AD drugs and for developing AD therapeutic strategies. Clarifying the molecular mechanism that links the identified acetylcholine signaling to AD pathophysiology will advance the development of AD therapeutic strategies.
  • Emran Hossen, Yasuhiro Funahashi, Md Omar Faruk, Rijwan Uddin Ahammad, Mutsuki Amano, Kiyofumi Yamada, Kozo Kaibuchi
    International journal of molecular sciences 24(1) 2022年12月26日  査読有り
    The N-methyl-D-aspartate receptor (NMDAR)-mediated structural plasticity of dendritic spines plays an important role in synaptic transmission in the brain during learning and memory formation. The Rho family of small GTPase RhoA and its downstream effector Rho-kinase/ROCK are considered as one of the major regulators of synaptic plasticity and dendritic spine formation, including long-term potentiation (LTP). However, the mechanism by which Rho-kinase regulates synaptic plasticity is not yet fully understood. Here, we found that Rho-kinase directly phosphorylated discs large MAGUK scaffold protein 2 (DLG2/PSD-93), a major postsynaptic scaffold protein that connects postsynaptic proteins with NMDARs; an ionotropic glutamate receptor, which plays a critical role in synaptic plasticity. Stimulation of striatal slices with an NMDAR agonist induced Rho-kinase-mediated phosphorylation of PSD-93 at Thr612. We also identified PSD-93-interacting proteins, including DLG4 (PSD-95), NMDARs, synaptic Ras GTPase-activating protein 1 (SynGAP1), ADAM metallopeptidase domain 22 (ADAM22), and leucine-rich glioma-inactivated 1 (LGI1), by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among them, Rho-kinase increased the binding of PSD-93 to PSD-95 and NMDARs. Furthermore, we found that chemical-LTP induced by glycine, which activates NMDARs, increased PSD-93 phosphorylation at Thr612, spine size, and PSD-93 colocalization with PSD-95, while these events were blocked by pretreatment with a Rho-kinase inhibitor. These results indicate that Rho-kinase phosphorylates PSD-93 downstream of NMDARs, and suggest that Rho-kinase mediated phosphorylation of PSD-93 increases the association with PSD-95 and NMDARs to regulate structural synaptic plasticity.
  • Xinjian Zhang, Daisuke Tsuboi, Yasuhiro Funahashi, Yukie Yamahashi, Kozo Kaibuchi, Taku Nagai
    International journal of molecular sciences 23(19) 2022年10月1日  査読有り
    Dopamine regulates emotional behaviors, including rewarding and aversive behaviors, through the mesolimbic dopaminergic pathway, which projects dopamine neurons from the ventral tegmental area to the nucleus accumbens (NAc). Protein phosphorylation is critical for intracellular signaling pathways and physiological functions, which are regulated by neurotransmitters in the brain. Previous studies have demonstrated that dopamine stimulated the phosphorylation of intracellular substrates, such as receptors, ion channels, and transcription factors, to regulate neuronal excitability and synaptic plasticity through dopamine receptors. We also established a novel database called KANPHOS that provides information on phosphorylation signals downstream of monoamines identified by our kinase substrate screening methods, including dopamine, in addition to those reported in the literature. Recent advances in proteomics techniques have enabled us to clarify the mechanisms through which dopamine controls rewarding and aversive behaviors through signal pathways in the NAc. In this review, we discuss the intracellular phosphorylation signals regulated by dopamine in these two emotional behaviors.
  • Daisuke Tsuboi, Takeshi Otsuka, Takushi Shimomura, Md Omar Faruk, Yukie Yamahashi, Mutsuki Amano, Yasuhiro Funahashi, Keisuke Kuroda, Tomoki Nishioka, Kenta Kobayashi, Hiromi Sano, Taku Nagai, Kiyofumi Yamada, Anastasios V Tzingounis, Atsushi Nambu, Yoshihiro Kubo, Yasuo Kawaguchi, Kozo Kaibuchi
    Cell reports 40(10) 111309-111309 2022年9月6日  査読有り
    Dysfunctional dopamine signaling is implicated in various neuropsychological disorders. Previously, we reported that dopamine increases D1 receptor (D1R)-expressing medium spiny neuron (MSN) excitability and firing rates in the nucleus accumbens (NAc) via the PKA/Rap1/ERK pathway to promote reward behavior. Here, the results show that the D1R agonist, SKF81297, inhibits KCNQ-mediated currents and increases D1R-MSN firing rates in murine NAc slices, which is abolished by ERK inhibition. In vitro ERK phosphorylates KCNQ2 at Ser414 and Ser476; in vivo, KCNQ2 is phosphorylated downstream of dopamine signaling in NAc slices. Conditional deletion of Kcnq2 in D1R-MSNs reduces the inhibitory effect of SKF81297 on KCNQ channel activity, while enhancing neuronal excitability and cocaine-induced reward behavior. These effects are restored by wild-type, but not phospho-deficient KCNQ2. Hence, D1R-ERK signaling controls MSN excitability via KCNQ2 phosphorylation to regulate reward behavior, making KCNQ2 a potential therapeutical target for psychiatric diseases with a dysfunctional reward circuit.
  • Mengya Wu, Yasuhiro Funahashi, Tetsuya Takano, Emran Hossen, Rijwan Uddin Ahammad, Daisuke Tsuboi, Mutsuki Amano, Kiyofumi Yamada, Kozo Kaibuchi
    Neurochemical Research 2022年5月27日  査読有り
  • Rijwan Uddin Ahammad, Tomoki Nishioka, Junichiro Yoshimoto, Takayuki Kannon, Mutsuki Amano, Yasuhiro Funahashi, Daisuke Tsuboi, Md Omar Faruk, Yukie Yamahashi, Kiyofumi Yamada, Taku Nagai, Kozo Kaibuchi
    Cells 11(1) 2021年12月24日  査読有り
    Protein phosphorylation plays critical roles in a variety of intracellular signaling pathways and physiological functions that are controlled by neurotransmitters and neuromodulators in the brain. Dysregulation of these signaling pathways has been implicated in neurodevelopmental disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia. While recent advances in mass spectrometry-based proteomics have allowed us to identify approximately 280,000 phosphorylation sites, it remains largely unknown which sites are phosphorylated by which kinases. To overcome this issue, previously, we developed methods for comprehensive screening of the target substrates of given kinases, such as PKA and Rho-kinase, upon stimulation by extracellular signals and identified many candidate substrates for specific kinases and their phosphorylation sites. Here, we developed a novel online database to provide information about the phosphorylation signals identified by our methods, as well as those previously reported in the literature. The "KANPHOS" (Kinase-Associated Neural Phospho-Signaling) database and its web portal were built based on a next-generation XooNIps neuroinformatics tool. To explore the functionality of the KANPHOS database, we obtained phosphoproteomics data for adenosine-A2A-receptor signaling and its downstream MAPK-mediated signaling in the striatum/nucleus accumbens, registered them in KANPHOS, and analyzed the related pathways.
  • Md Omar Faruk, Daisuke Tsuboi, Yukie Yamahashi, Yasuhiro Funahashi, You-Hsin Lin, Rijwan Uddin Ahammad, Emran Hossen, Mutsuki Amano, Tomoki Nishioka, Anastasios V Tzingounis, Kiyofumi Yamada, Taku Nagai, Kozo Kaibuchi
    Journal of neurochemistry 160(3) 325-341 2021年12月8日  査読有り
    The nucleus accumbens (NAc) plays critical roles in emotional behaviors, including aversive learning. Aversive stimuli such as an electric foot shock increase acetylcholine (ACh) in the NAc, and muscarinic signaling appears to increase neuronal excitability and aversive learning. Muscarinic signaling inhibits the voltage-dependent potassium KCNQ current which regulates neuronal excitability, but the regulatory mechanism has not been fully elucidated. Phosphorylation of KCNQ2 at threonine 217 (T217) and its inhibitory effect on channel activity were predicted. However, whether and how muscarinic signaling phosphorylates KCNQ2 in vivo remains unclear. Here, we found that PKC directly phosphorylated KCNQ2 at T217 in vitro. Carbachol and a muscarinic M1 receptor (M1R) agonist facilitated KCNQ2 phosphorylation at T217 in NAc/striatum slices in a PKC-dependent manner. Systemic administration of the cholinesterase inhibitor donepezil, which is commonly used to treat dementia, and electric foot shock to mice induced the phosphorylation of KCNQ2 at T217 in the NAc, whereas phosphorylation was suppressed by an M1R antagonist. Conditional deletion of Kcnq2 in the NAc enhanced electric foot shock induced aversive learning. Our findings indicate that muscarinic signaling induces the phosphorylation of KCNQ2 at T217 via PKC activation for aversive learning.
  • Anthony Ariza, Yasuhiro Funahashi, Sachi Kozawa, Md. Omar Faruk, Taku Nagai, Mutsuki Amano, Kozo Kaibuchi
    Journal of Neurochemistry 157(6) 1774-1788 2021年6月  査読有り
  • Koki Nagaoka, Takuya Nagashima, Nozomi Asaoka, Hiroki Yamamoto, Chihiro Toda, Gen Kayanuma, Soni Siswanto, Yasuhiro Funahashi, Keisuke Kuroda, Kozo Kaibuchi, Yasuo Mori, Kazuki Nagayasu, Hisashi Shirakawa, Shuji Kaneko
    JCI insight 6(10) 2021年5月24日  査読有り
    Antipsychotics often cause tardive dyskinesia, an adverse symptom of involuntary hyperkinetic movements. Analysis of the US Food and Drug Administration Adverse Event Reporting System and JMDC insurance claims revealed that acetaminophen prevented the dyskinesia induced by dopamine D2 receptor antagonists. In vivo experiments further showed that a 21-day treatment with haloperidol increased the number of vacuous chewing movements (VCMs) in rats, an effect that was inhibited by oral acetaminophen treatment or intracerebroventricular injection of N-(4-hydroxyphenyl)-arachidonylamide (AM404), an acetaminophen metabolite that acts as an activator of the transient receptor potential vanilloid 1 (TRPV1). In mice, haloperidol-induced VCMs were also mitigated by treatment with AM404 applied to the dorsal striatum, an effect not seen in TRPV1-deficient mice. Acetaminophen prevented the haloperidol-induced decrease in the number of c-Fos+preproenkephalin+ striatal neurons in wild-type mice but not in TRPV1-deficient mice. Finally, chemogenetic stimulation of indirect pathway medium spiny neurons in the dorsal striatum decreased haloperidol-induced VCMs. These results suggest that acetaminophen activates the indirect pathway neurons by activating TRPV1 channels via AM404.
  • Yasuhiro Funahashi, Takashi Watanabe, Kozo Kaibuchi
    Current opinion in cell biology 63 76-87 2020年2月1日  査読有り筆頭著者
    Neurons are highly polarized cells that have structurally and functionally distinct processes called axons and dendrites. How neurons establish polarity is one of the fundamental questions of neuroscience. In the last decade, significant progress has been made in identifying and understanding the molecular mechanisms responsible for neuronal polarization, primarily through researches conducted on cultured neurons. Advances in phosphoproteomics technologies and molecular tools have enabled comprehensive signal analysis and visualization and manipulation of signaling molecules for analyzing neuronal polarity. Furthermore, advances in gene transfer techniques have revealed the role of extracellular and intracellular signaling molecules in neuronal polarization in vivo. This review discusses the latest insights and techniques for the elucidation of the molecular mechanisms that control neuronal polarity.
  • Yasuhiro Funahashi, Anthony Ariza, Ryosuke Emi, Yifan Xu, Wei Shan, Ko Suzuki, Sachi Kozawa, Rijwan Uddin Ahammad, Mengya Wu, Tetsuya Takano, Yoshimitsu Yura, Keisuke Kuroda, Taku Nagai, Mutsuki Amano, Kiyofumi Yamada, Kozo Kaibuchi
    Cell reports 29(10) 3235-3252 2019年12月3日  査読有り筆頭著者
    Dopamine (DA) activates mitogen-activated protein kinase (MAPK) via protein kinase A (PKA)/Rap1 in medium spiny neurons (MSNs) expressing the dopamine D1 receptor (D1R) in the nucleus accumbens (NAc), thereby regulating reward-related behavior. However, how MAPK regulates reward-related learning and memory through gene expression is poorly understood. Here, to identify the relevant transcriptional factors, we perform proteomic analysis using affinity beads coated with cyclic AMP response element binding protein (CREB)-binding protein (CBP), a transcriptional coactivator involved in reward-related behavior. We identify more than 400 CBP-interacting proteins, including Neuronal Per Arnt Sim domain protein 4 (Npas4). We find that MAPK phosphorylates Npas4 downstream of PKA, increasing the Npas4-CBP interaction and the transcriptional activity of Npas4 at the brain-derived neurotrophic factor (BDNF) promoter. The deletion of Npas4 in D1R-expressing MSNs impairs cocaine-induced place preference, which is rescued by Npas4-wild-type (WT), but not by a phospho-deficient Npas4 mutant. These observations suggest that MAPK phosphorylates Npas4 in D1R-MSNs and increases transcriptional activity to enhance reward-related learning and memory.
  • Nishino T, Tamada K, Maeda A, Abe T, Kiyonari H, Funahashi Y, Kaibuchi K, Takumi T, Konishi H
    Molecular brain 12(1) 94-94 2019年11月  査読有り
  • Mutsuki Amano, Tomoki Nishioka, Daisuke Tsuboi, Keisuke Kuroda, Yasuhiro Funahashi, Yukie Yamahashi, Kozo Kaibuchi
    Journal of biochemistry 165(4) 301-307 2019年4月1日  査読有り
    Accumulating information on eukaryotic protein phosphorylation implies a large and complicated phospho-signalling network in various cellular processes. Although a large number of protein phosphorylation sites have been detected, their physiological consequences and the linkage between each phosphorylation site and the responsible protein kinase remain largely unexplored. To understand kinase-oriented phospho-signalling pathways, we have developed novel substrate screening technologies. In this review, we described the in vitro and in vivo screening methods named kinase-interacting substrate screening analysis and kinase-oriented substrate screening analysis, respectively.
  • Tomoki Nishioka, Mutsuki Amano, Yasuhiro Funahashi, Daisuke Tsuboi, Yukie Yamahashi, Kozo Kaibuchi
    Current protocols in chemical biology 11(1) e60 2019年3月  査読有り
    Protein phosphorylation plays a critical role in the regulation of cellular function. Information on protein phosphorylation and the responsible kinases is important for understanding intracellular signaling. A method for in vivo screening of kinase substrates named KIOSS (kinase-oriented substrate screening) has been developed. This protocol provides a method that utilizes phosphoprotein-binding modules such as 14-3-3 protein, the pin1-WW domain, and the chek2-FHA domain as biological filters to successfully enrich phosphorylated proteins related to intracellular signaling rather than housekeeping and/or structural proteins. More than 1000 substrate candidates for PKA, PKC, MAPK, and Rho-kinase in HeLa cells, as well as phosphorylation downstream of D1R, NMDAR, adenosine A2a receptor, PKA, PKC, MAPK, and Rho-kinase in mouse brain slice cultures have been identified by this method. An online database named KANPHOS (Kinase-Associated Neural Phospho-Signaling) provides the phosphorylation signals identified by these studies, as well as those previously reported in the literature. © 2019 by John Wiley & Sons, Inc.
  • Xinjian Zhang, Taku Nagai, Rijwan Uddin Ahammad, Keisuke Kuroda, Shinichi Nakamuta, Takashi Nakano, Naoto Yukinawa, Yasuhiro Funahashi, Yukie Yamahashi, Mutsuki Amano, Junichiro Yoshimoto, Kiyofumi Yamada, Kozo Kaibuchi
    Neurochemistry international 122 8-18 2019年1月  査読有り
    Medium spiny neurons (MSNs) expressing dopamine D1 receptor (D1R) or D2 receptor (D2R) are major components of the striatum. Stimulation of D1R activates protein kinase A (PKA) through Golf to increase neuronal activity, while D2R stimulation inhibits PKA through Gi. Adenosine A2A receptor (A2AR) coupled to Golf is highly expressed in D2R-MSNs within the striatum. However, how dopamine and adenosine co-operatively regulate PKA activity remains largely unknown. Here, we measured Rap1gap serine 563 phosphorylation to monitor PKA activity and examined dopamine and adenosine signals in MSNs. We found that a D1R agonist increased Rap1gap phosphorylation in striatal slices and in D1R-MSNs in vivo. A2AR agonist CGS21680 increased Rap1gap phosphorylation, and pretreatment with the D2R agonist quinpirole blocked this effect in striatal slices. D2R antagonist eticlopride increased Rap1gap phosphorylation in D2R-MSNs in vivo, and the effect of eticlopride was blocked by the pretreatment with the A2AR antagonist SCH58261. These results suggest that adenosine positively regulates PKA in D2R-MSNs through A2AR, while this effect is blocked by basal dopamine in vivo. Incorporating computational model analysis, we propose that the shift from D1R-MSNs to D2R-MSNs or vice versa appears to depend predominantly on a change in dopamine concentration.
  • Takano T, Funahashi Y, Kaibuchi K
    Frontiers in cell and developmental biology 7 69 2019年  査読有り
  • Taku Nagai, Shinichi Nakamuta, Keisuke Kuroda, Sakura Nakauchi, Tomoki Nishioka, Tetsuya Takano, Xinjian Zhang, Daisuke Tsuboi, Yasuhiro Funahashi, Takashi Nakano, Junichiro Yoshimoto, Kenta Kobayashi, Motokazu Uchigashima, Masahiko Watanabe, Masami Miura, Akinori Nishi, Kazuto Kobayashi, Kiyofumi Yamada, Mutsuki Amano, Kozo Kaibuchi
    NEURON 89(3) 550-565 2016年2月  査読有り
    Dopamine (DA) type 1 receptor (D1R) signaling in the striatum presumably regulates neuronal excitability and reward-related behaviors through PKA. However, whether and how D1Rs and PKA regulate neuronal excitability and behavior remain largely unknown. Here, we developed a phosphoproteomic analysis method to identify known and novel PKA substrates downstream of the D1R and obtained more than 100 candidate substrates, including Rap1 GEF (Rasgrp2). We found that PKA phosphorylation of Rasgrp2 activated its guanine nucleotide-exchange activity on Rap1. Cocaine exposure activated Rap1 in the nucleus accumbens in mice. The expression of constitutively active PKA or Rap1 in accumbal D1R-expressing medium spiny neurons (D1R-MSNs) enhanced neuronal firing rates and behavioral responses to cocaine exposure through MAPK. Knockout of Rap1 in the accumbal D1R-MSNs was sufficient to decrease these phenotypes. These findings demonstrate a novel DA-PKA-Rap1-MAPK intracellular signaling mechanism in D1R-MSNs that increases neuronal excitability to enhance reward-related behaviors.
  • Yoshimitsu Yura, Mutsuki Amano, Mikito Takefuji, Tomohiro Bando, Kou Suzuki, Katsuhiro Kato, Tomonari Hamaguchi, Md. Hasanuzzaman Shohag, Tetsuya Takano, Yasuhiro Funahashi, Shinichi Nakamuta, Keisuke Kuroda, Tomoki Nishioka, Toyoaki Murohara, Kozo Kaibuchi
    CELL STRUCTURE AND FUNCTION 41(2) 105-120 2016年  査読有り
    Protein phosphorylation plays an important role in the physiological regulation of cardiac function. Myocardial contraction and pathogenesis of cardiac diseases have been reported to be associated with adaptive or maladaptive protein phosphorylation; however, phosphorylation signaling in the heart is not fully elucidated. We recently developed a novel kinase-interacting substrate screening (KISS) method for exhaustive screening of protein kinase substrates, using mass spectrometry and affinity chromatography. First, we examined protein phosphorylation by extracellular signal-regulated kinase (ERK) and protein kinase A (PKA), which has been relatively well studied in cardiomyocytes. The KISS method showed that ERK and PKA mediated the phosphorylation of known cardiac-substrates of each kinase such as Rps6ka1 and cTnI, respectively. Using this method, we found about 330 proteins as Rho-kinase-mediated substrates, whose substrate in cardiomyocytes is unknown. Among them, CARP/Ankrd1, a muscle ankyrin repeat protein, was confirmed as a novel Rho-kinase-mediated substrate. We also found that non-phosphorylatable form of CARP repressed cardiac hypertrophy-related gene Myosin light chain-2v (MLC-2v) promoter activity, and decreased cell size of heart derived H9c2 myoblasts more efficiently than wild type-CARP. Thus, focused proteomics enable us to reveal a novel signaling pathway in the heart.
  • Chundi Xu, Yasuhiro Funahashi, Takashi Watanabe, Tetsuya Takano, Shinichi Nakamuta, Takashi Namba, Kozo Kaibuchi
    JOURNAL OF NEUROSCIENCE 35(43) 14517-14532 2015年10月  査読有り
    How extracellular cues direct axon-dendrite polarization in mouse developing neurons is not fully understood. Here, we report that the radial glial cell (RGC)-cortical neuron interaction directs axon formation at the opposite side of the neuron from the contact site. N-cadherin accumulates at the contact site between the RGC and cortical neuron. Inhibition of the N-cadherin-mediated adhesion decreases this oriented axon formation in vitro, and disrupts the axon-dendrite polarization in vivo. Furthermore, the RGC-neuron interaction induces the polarized distribution of active RhoA at the contacting neurite and active Rac1 at the opposite neurite. Inhibition of Rho-Rho-kinase signaling in a neuron impairs the oriented axon formation in vitro, and prevents axon-dendrite polarization in vivo. Collectively, these results suggest that the N-cadherin-mediated radial glia-neuron interaction determines the contacting neurite as the leading process for radial glia-guided neuronal migration and directs axon formation to the opposite side acting through the Rho family GTPases.
  • Takashi Namba, Yasuhiro Funahashi, Shinichi Nakamuta, Chundi Xu, Tetsuya Takano, Kozo Kaibuchi
    PHYSIOLOGICAL REVIEWS 95(3) 995-1024 2015年7月  
    Neurons are one of the highly polarized cells in the body. One of the fundamental issues in neuroscience is how neurons establish their polarity; therefore, this issue fascinates many scientists. Cultured neurons are useful tools for analyzing the mechanisms of neuronal polarization, and indeed, most of the molecules important in their polarization were identified using culture systems. However, we now know that the process of neuronal polarization in vivo differs in some respects from that in cultured neurons. One of the major differences is their surrounding microenvironment; neurons in vivo can be influenced by extrinsic factors from the microenvironment. Therefore, a major question remains: How are neurons polarized in vivo? Here, we begin by reviewing the process of neuronal polarization in culture conditions and in vivo. We also survey the molecular mechanisms underlying neuronal polarization. Finally, we introduce the theoretical basis of neuronal polarization and the possible involvement of neuronal polarity in disease and traumatic brain injury.
  • Tetsuya Takano, Chundi Xu, Yasuhiro Funahashi, Takashi Namba, Kozo Kaibuchi
    DEVELOPMENT 142(12) 2088-2093 2015年6月  
    Neurons are highly polarized cells with structurally and functionally distinct processes called axons and dendrites. This polarization underlies the directional flow of information in the central nervous system, so the establishment and maintenance of neuronal polarization is crucial for correct development and function. Great progress in our understanding of how neurons establish their polarity has been made through the use of cultured hippocampal neurons, while recent technological advances have enabled in vivo analysis of axon specification and elongation. This short review and accompanying poster highlight recent advances in this fascinating field, with an emphasis on the signaling mechanisms underlying axon and dendrite specification in vitro and in vivo.
  • Tomonari Hamaguchi, Shinichi Nakamuta, Yasuhiro Funahashi, Tetsuya Takano, Tomoki Nishioka, Md. Hasanuzzaman Shohag, Yoshimitsu Yura, Kozo Kaibuchi, Mutsuki Amano
    CELL STRUCTURE AND FUNCTION 40(1) 1-12 2015年  査読有り
    Protein kinase A (PKA) is a serine/threonine kinase whose activity depends on the levels of cyclic AMP (cAMP). PKA plays essential roles in numerous cell types such as myocytes and neurons. Numerous substrate screens have been attempted to clarify the entire scope of the PKA signaling cascade, but it is still underway. Here, we performed a comprehensive screen that consisted of immunoprecipitation and mass spectrometry, with a focus on the identification of PKA substrates. The lysate of HeLa cells treated with Forskolin (FSK)/3-isobutyl methyl xanthine (IBMX) and/or H-89 was subjected to immunoprecipitation using anti-phospho-PKA substrate antibody. The identity of the phosophoproteins and phosphorylation sites in the precipitants was determined using liquid chromatography tandem mass spectrometry (LC/MS/MS). We obtained 112 proteins as candidate substrates and 65 candidate sites overall. Among the candidate substrates, Rho-kinase/ ROCK2 was confirmed to be a novel substrate of PKA both in vitro and in vivo. In addition to Rho-kinase, we found more than a hundred of novel candidate substrates of PKA using this screen, and these discoveries provide us with new insights into PKA signaling.
  • Yasuhiro Funahashi, Takashi Namba, Shinichi Nakamuta, Kozo Kaibuchi
    CURRENT OPINION IN NEUROBIOLOGY 27 215-223 2014年8月  査読有り筆頭著者
    Neurons are one of the most polarized cell types in the body. During the past three decades, many researchers have attempted to understand the mechanisms of neuronal polarization using cultured neurons. Although these studies have succeeded in discovering the various signal molecules that regulate neuronal polarization, one major question remains unanswered: how do neurons polarize in vivo?
  • Takashi Namba, Yuji Kibe, Yasuhiro Funahashi, Shinichi Nakamuta, Tetsuya Takano, Takuji Ueno, Akiko Shimada, Sachi Kozawa, Mayumi Okamoto, Yasushi Shimoda, Kanako Oda, Yoshino Wada, Tomoyuki Masuda, Akira Sakakibara, Michihiro Igarashi, Takaki Miyata, Catherine Faivre-Sarrailh, Kosei Takeuchi, Kozo Kaibuchi
    NEURON 81(4) 814-829 2014年2月  査読有り
    The polarization of neurons, which mainly includes the differentiation of axons and dendrites, is regulated by cell-autonomous and non-cell-autonomous factors. In the developing central nervous system, neuronal development occurs in a heterogeneous environment that also comprises extracellular matrices, radial glial cells, and neurons. Although many cell-autonomous factors that affect neuronal polarization have been identified, the microenvironmental cues involved in neuronal polarization remain largely unknown. Here, we show that neuronal polarization occurs in a microenvironment in the lower intermediate zone, where the cell adhesion molecule transient axonal glycoprotein-1 (TAG-1) is expressed in cortical efferent axons. The immature neurites of multipolar cells closely contact TAG-1-positive axons and generate axons. Inhibition of TAG-1-mediated cell-to-cell interaction or its downstream kinase Lyn impairs neuronal polarization. These results show that the TAG-1-mediated cell-to-cell interaction between the unpolarized multipolar cells and the pioneering axons regulates the polarization of multipolar cells partly through Lyn kinase and Rac1.
  • Yasuhiro Funahashi, Takashi Namba, Shin Fujisue, Norimichi Itoh, Shinichi Nakamuta, Katsuhiro Kato, Akiko Shimada, Chundi Xu, Wei Shan, Tomoki Nishioka, Kozo Kaibuchi
    JOURNAL OF NEUROSCIENCE 33(33) 13270-13285 2013年8月  査読有り筆頭著者
    Axon formation is one of the most important events in neuronal polarization and is regulated by signaling molecules involved in cytoskeletal rearrangement and protein transport. We previously found that Partition-defective 3 (Par3) is associated with KIF3A (kinesin-2) and is transported into the nascent axon in a KIF3A-dependent fashion. Par3 interacts with the Rac-specific guanine nucleotide-exchange factors (GEFs) Tiam1/2, which activate Rac1, and participates in axon formation in cultured hippocampal neurons. However, the regulatory mechanism of the Par3-KIF3A interaction is poorly understood, and the role of Par3 in neuronal polarization in vivo remains elusive. Here, we found that extracellular signal-regulated kinase 2 (ERK2) directly interacts with Par3, that ERK2 phosphorylates Par3 at Ser-1116, and that the phosphorylated Par3 accumulates at the axonal tips in a manner dependent upon ERK2 activity. The phosphorylation of Par3 by ERK2 inhibited the interaction of Par3 with KIF3A but not with the other Par3 partners, including Par6 and aPKC. The phosphomimic mutant of Par3 (Par3-S1116D) showed less binding activity with the KIF3s and slower transport in the axons. The knockdown of Par3 by RNA interference impaired neuronal polarization, which was rescued with RNAi-resistant Par3, but not with the phosphomimic Par3 mutant, in cultured rat hippocampal neurons and mouse cortical projection neurons in vivo. These results suggest that ERK2 phosphorylates Par3 and inhibits its binding with KIF3A, thereby controlling Par3 transport and neuronal polarity.
  • Shinichi Nakamuta, Yasuhiro Funahashi, Takashi Namba, Nariko Arimura, Marina R. Picciotto, Hiroshi Tokumitsu, Thomas R. Soderling, Akira Sakakibara, Takaki Miyata, Hiroyuki Kamiguchi, Kozo Kaibuchi
    SCIENCE SIGNALING 4(199) ra76 2011年11月  査読有り
    Neurons are highly polarized cells that have structurally distinct processes-the axons and dendrites-that differentiate from common immature neurites. In cultured hippocampal neurons, one of these immature neurites stochastically initiates rapid extension and becomes an axon, whereas the others become dendrites. Various extracellular and intracellular signals contribute to axon specification; however, the specific intracellular pathways whereby particular extracellular stimuli lead to axon specification remain to be delineated. Here, we found that the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) were required for axon specification in an autocrine or a paracrine fashion. Using local application with a micropipette to selectively stimulate individual neurites, we found that stimulation of a selected neurite by BDNF or NT-3 induced neurite outgrowth and subsequent axon formation. NT-3 induced a rapid increase in calcium ions (Ca2+) in an inositol 1,4,5-trisphosphate (IP3)-dependent fashion as well as local activation of the Ca2+ effector Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) in the growth cone. Inhibition of neurotrophin receptors or CaMKK attenuated NT-3-induced axon specification in cultured neurons and axon formation in cortical neurons in vivo. These results identify a role for IP3-Ca2+-CaMKK signaling in axon specification.
  • Takashi Namba, Shinichi Nakamuta, Yasuhiro Funahashi, Kozo Kaibuchi
    DEVELOPMENTAL NEUROBIOLOGY 71(6) 445-457 2011年6月  査読有り
    Neurons are functionally and morphologically polarized and possess two distinct types of neurites: axons and dendrites. Key molecules for axon formation are transported along microtubules and accumulated at the distal end of the nascent axons. In this review, we summarize recent advances in the understanding of the mechanisms involved in selective transport in neurons. In addition, we focus on motor proteins, cargo, cargo adaptors, and the loading and unloading of cargo. (C) 2011 Wiley Periodicals, Inc. Develop Neurobiol 71: 445-457, 2011
  • Nariko Arimura, Atsushi Hattori, Toshihide Kimura, Shinichi Nakamuta, Yasuhiro Funahashi, Shinji Hirotsune, Kenya Furuta, Takashi Urano, Yoko Y. Toyoshima, Kozo Kaibuchi
    JOURNAL OF NEUROCHEMISTRY 111(2) 380-390 2009年10月  査読有り
    The active transport of proteins and organelles is critical for cellular organization and function in eukaryotic cells. A substantial portion of long-distance transport depends on the opposite polarity of the kinesin and dynein family molecular motors to move cargo along microtubules. It is increasingly clear that many cargo molecules are moved bi-directionally by both sets of motors; however, the regulatory mechanism that determines the directionality of transport remains unclear. We previously reported that collapsin response mediator protein-2 (CRMP-2) played key roles in axon elongation and neuronal polarization. CRMP-2 was also found to associate with the anterograde motor protein Kinesin-1 and was transported with other cargoes toward the axon terminal. In this study, we investigated the association of CRMP-2 with a retrograde motor protein, cytoplasmic dynein. Immunoprecipitation assays showed that CRMP-2 interacted with cytoplasmic dynein heavy chain. Dynein heavy chain directly bound to the N-terminus of CRMP-2, which is the distinct side of CRMP-2's kinesin light chain-binding region. Furthermore, overexpression of the dynein-binding fragments of CRMP-2 prevented dynein-driven microtubule transport in COS-7 cells. Given that CRMP-2 is a key regulator of axon elongation, this interference with cytoplasmic dynein function by CRMP-2 might have an important role in axon formation, and neuronal development.
  • Nariko Arimura, Toshihide Kimura, Shinichi Nakamuta, Shinichiro Taya, Yasuhiro Funahashi, Atsushi Hattori, Akiko Shimada, Cine Menager, Saeko Kawabata, Kayo Fujii, Akihiro Iwamatsu, Rosalind A. Segal, Mitsunori Fukuda, Kozo Kaibuchi
    DEVELOPMENTAL CELL 16(5) 675-686 2009年5月  査読有り
    The neurotrophin receptors TrkA, TrkB, and TrkC are localized at the surface of the axon terminus and transmit key signals from brain-derived neurotrophic factor (BDNF) for diverse effects on neuronal survival, differentiation, and axon formation. Trk receptors are sorted into axons via the anterograde transport of vesicles and are then inserted into axonal plasma membranes. However, the transport mechanism remains largely unknown. Here, we show that the Slp1/Rab27B/CRMP-2 complex directly links TrkB to Kinesin-1, and that this association is required for the anterograde transport of TrkB-containing vesicles. The cytoplasmic tail of TrkB binds to Slp1 in a Rab27B-dependent manner, and CRMP-2 connects Slp1 to Kinesin-1. Knockdown of these molecules by siRNA reduces the anterograde transport and membrane targeting of TrkB, thereby inhibiting BDNF-induced ERK1/2 phosphorylation in axons. Our data reveal a molecular mechanism for the selective anterograde transport of TrkB in axons and show how the transport is coupled to BDNF signaling.

書籍等出版物

 4

講演・口頭発表等

 2

共同研究・競争的資金等の研究課題

 9