Sho Hasegawa, Fumihiro Mizokami, Yoshitaka Kameya, Yuji Hayakawa, Tsuyoshi Watanabe, Yasumoto Matsui
Digital health, 9 20552076231219438-20552076231219438, 2023
OBJECTIVE: To compare the performance of the diagnostic model for fall risk based on the short physical performance battery (SPPB) developed using commercial machine learning software (MLS) and binomial logistic regression analysis (BLRA). METHODS: We enrolled 797 out of 850 outpatients who visited the clinic between March 2016 and November 2021. Patients were categorized into the development (n = 642) and validation (n = 155) datasets. Age, sex, number of comorbidities, number of medications, body mass index (BMI), calf circumference (left-right average), handgrip strength (left-right average), total SPPB score, and history of falls were determined. We defined fall risk by an SPPB score of ≤6 in men and ≤9 in women. The main metrics used for evaluating the machine learning model and BLRA were the area under the curve (AUC), accuracy, precision, recall (sensitivity), specificity, and F-measure. The commercial MLS automatically calculates the parameter range of the highest contribution. RESULTS: The participants included 797 outpatients (mean age, 76.3 years; interquartile range, 73.0-81.0; 288 men). The metrics of the current diagnostic model in the commercial MLS were as follows: AUC = 0.78, accuracy = 0.74, precision = 0.46, recall (sensitivity) = 0.81, specificity = 0.71, F-measure = 0.59. The metrics of the current diagnostic model in the BLRA were as follows: AUC = 0.77, accuracy = 0.75, precision = 0.47, recall (sensitivity) = 0.67, specificity = 0.77, F-measure = 0.55. The risk factors for falls in older adult outpatients were handgrip strength, female sex, experience of falls, BMI, and calf circumference in the commercial MLS. CONCLUSIONS: The diagnostic model for fall risk based on SPPB scores constructed using commercial MLS is noninferior to BLRA.