医学部 生理学Ⅰ

nagasaki hiroshi

  (長崎 弘)

Profile Information

Affiliation
Professor, School of Medicine Faculty of Medicine, Fujita Health University
Degree
ph.D.(Nagoya University)

J-GLOBAL ID
200901059020564337
researchmap Member ID
6000001653

Major Papers

 26
  • Yu Kodani, Miho Kawata, Hidetaka Suga, Takatoshi Kasai, Chikafumi Ozone, Mayu Sakakibara, Atsushi Kuwahara, Shiori Taga, Hiroshi Arima, Toshiki Kameyama, Kanako Saito, Akira Nakashima, Hiroshi Nagasaki
    Frontiers in Endocrinology, 13, Jul 12, 2022  
    Human stem cell-derived organoid culture enables the in vitro analysis of the cellular function in three-dimensional aggregates mimicking native organs, and also provides a valuable source of specific cell types in the human body. We previously established organoid models of the hypothalamic-pituitary (HP) complex using human pluripotent stem cells. Although the models are suitable for investigating developmental and functional HP interactions, we consider that isolated pituitary cells are also useful for basic and translational research on the pituitary gland, such as stem cell biology and regenerative medicine. To develop a method for the purification of pituitary cells in HP organoids, we performed surface marker profiling of organoid cells derived from human induced pluripotent stem cells (iPSCs). Screening of 332 human cell surface markers and a subsequent immunohistochemical analysis identified epithelial cell adhesion molecule (EpCAM) as a surface marker of anterior pituitary cells, as well as their ectodermal precursors. EpCAM was not expressed on hypothalamic lineages; thus, anterior pituitary cells were successfully enriched by magnetic separation of EpCAM+ cells from iPSC-derived HP organoids. The enriched pituitary population contained functional corticotrophs and their progenitors; the former responded normally to a corticotropin-releasing hormone stimulus. Our findings would extend the applicability of organoid culture as a novel source of human anterior pituitary cells, including stem/progenitor cells and their endocrine descendants.
  • Miho Kawata, Yu Kodani, Mahito Ohkuma, Ei-Ichi Miyachi, Yoko S Kaneko, Akira Nakashima, Hidetaka Suga, Toshiki Kameyama, Kanako Saito, Hiroshi Nagasaki
    PloS one, 17(11) e0276694, 2022  
    The hypothalamus is comprised of heterogenous cell populations and includes highly complex neural circuits that regulate the autonomic nerve system. Its dysfunction therefore results in severe endocrine disorders. Although recent experiments have been conducted for in vitro organogenesis of hypothalamic neurons from embryonic stem (ES) or induced pluripotent stem (iPS) cells, whether these stem cell-derived hypothalamic neurons can be useful for regenerative medicine remains unclear. We therefore performed orthotopic transplantation of mouse ES cell (mESC)-derived hypothalamic neurons into adult mouse brains. We generated electrophysiologically functional hypothalamic neurons from mESCs and transplanted them into the supraoptic nucleus of mice. Grafts extended their axons along hypothalamic nerve bundles in host brain, and some of them even projected into the posterior pituitary (PPit), which consists of distal axons of the magnocellular neurons located in hypothalamic supraoptic and paraventricular nuclei. The axonal projections to the PPit were not observed when the mESC-derived hypothalamic neurons were ectopically transplanted into the substantia nigra reticular part. These findings suggest that our stem cell-based orthotopic transplantation approach might contribute to the establishment of regenerative medicine for hypothalamic and pituitary disorders.

Misc.

 120

Presentations

 4

Professional Memberships

 4

Research Projects

 14

Other

 1
  • ①下垂体ホルモン産生細胞およびその前駆細胞を表面マーカーにより分離精製する方法。日本特許出願済み(特願2020-065346)