医科学研究センター

Hirotaka Shoji

  (昌子 浩孝)

Profile Information

Affiliation
Institute for Comprehensive Medical Science, Fujita Health University
Degree
博士(行動科学)(Mar, 2007, (筑波大学))

Researcher number
00466278
J-GLOBAL ID
201101086288639254
researchmap Member ID
B000001820

External link

遺伝子改変マウスの行動解析を基点として精神疾患モデルマウスを確立し、精神疾患の脳内機序の解明を試みています。

Papers

 58
  • Sin Yi Lee, Hirotaka Shoji, Aki Shimozawa, Hirofumi Aoyagi, Yoshiaki Sato, Kazuya Tsumagari, Mika Terumitsu, Haruhiko Motegi, Kensuke Okada, Koji Sekiguchi, Junro Kuromitsu, Jin Nakahara, Tsuyoshi Miyakawa, Daisuke Ito
    Neurology Neuroimmunology & Neuroinflammation, 11(3), May, 2024  Peer-reviewed
  • Hideo Hagihara, Hirotaka Shoji, Satoko Hattori, Giovanni Sala, Yoshihiro Takamiya, Mika Tanaka, Masafumi Ihara, Mihiro Shibutani, Izuho Hatada, Kei Hori, Mikio Hoshino, Akito Nakao, Yasuo Mori, Shigeo Okabe, Masayuki Matsushita, Anja Urbach, Yuta Katayama, Akinobu Matsumoto, Keiichi I Nakayama, Shota Katori, Takuya Sato, Takuji Iwasato, Haruko Nakamura, Yoshio Goshima, Matthieu Raveau, Tetsuya Tatsukawa, Kazuhiro Yamakawa, Noriko Takahashi, Haruo Kasai, Johji Inazawa, Ikuo Nobuhisa, Tetsushi Kagawa, Tetsuya Taga, Mohamed Darwish, Hirofumi Nishizono, Keizo Takao, Kiran Sapkota, Kazutoshi Nakazawa, Tsuyoshi Takagi, Haruki Fujisawa, Yoshihisa Sugimura, Kyosuke Yamanishi, Lakshmi Rajagopal, Nanette Deneen Hannah, Herbert Y Meltzer, Tohru Yamamoto, Shuji Wakatsuki, Toshiyuki Araki, Katsuhiko Tabuchi, Tadahiro Numakawa, Hiroshi Kunugi, Freesia L Huang, Atsuko Hayata-Takano, Hitoshi Hashimoto, Kota Tamada, Toru Takumi, Takaoki Kasahara, Tadafumi Kato, Isabella A Graef, Gerald R Crabtree, Nozomi Asaoka, Hikari Hatakama, Shuji Kaneko, Takao Kohno, Mitsuharu Hattori, Yoshio Hoshiba, Ryuhei Miyake, Kisho Obi-Nagata, Akiko Hayashi-Takagi, Léa J Becker, Ipek Yalcin, Yoko Hagino, Hiroko Kotajima-Murakami, Yuki Moriya, Kazutaka Ikeda, Hyopil Kim, Bong-Kiun Kaang, Hikari Otabi, Yuta Yoshida, Atsushi Toyoda, Noboru H Komiyama, Seth GN Grant, Michiru Ida-Eto, Masaaki Narita, Ken-ichi Matsumoto, Emiko Okuda-Ashitaka, Iori Ohmori, Tadayuki Shimada, Kanato Yamagata, Hiroshi Ageta, Kunihiro Tsuchida, Kaoru Inokuchi, Takayuki Sassa, Akio Kihara, Motoaki Fukasawa, Nobuteru Usuda, Tayo Katano, Teruyuki Tanaka, Yoshihiro Yoshihara, Michihiro Igarashi, Takashi Hayashi, Kaori Ishikawa, Satoshi Yamamoto, Naoya Nishimura, Kazuto Nakada, Shinji Hirotsune, Kiyoshi Egawa, Kazuma Higashisaka, Yasuo Tsutsumi, Shoko Nishihara, Noriyuki Sugo, Takeshi Yagi, Naoto Ueno, Tomomi Yamamoto, Yoshihiro Kubo, Rie Ohashi, Nobuyuki Shiina, Kimiko Shimizu, Sayaka Higo-Yamamoto, Katsutaka Oishi, Hisashi Mori, Tamio Furuse, Masaru Tamura, Hisashi Shirakawa, Daiki X Sato, Yukiko U Inoue, Takayoshi Inoue, Yuriko Komine, Tetsuo Yamamori, Kenji Sakimura, Tsuyoshi Miyakawa
    eLife, 12, Mar 26, 2024  Peer-reviewed
    Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer’s disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.
  • Taichi Shiraishi, Yuta Katayama, Masaaki Nishiyama, Hirotaka Shoji, Tsuyoshi Miyakawa, Taisuke Mizoo, Akinobu Matsumoto, Atsushi Hijikata, Tsuyoshi Shirai, Kouta Mayanagi, Keiichi I Nakayama
    Molecular psychiatry, Mar 5, 2024  
    CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.
  • Hirotaka Shoji, Kazutaka Ikeda, Tsuyoshi Miyakawa
    Molecular brain, 16(1) 32-32, Mar 29, 2023  Peer-reviewed
    The serotonin transporter (5-HTT) plays a critical role in the regulation of serotonin neurotransmission. Mice genetically deficient in 5-HTT expression have been used to study the physiological functions of 5-HTT in the brain and have been proposed as a potential animal model for neuropsychiatric and neurodevelopmental disorders. Recent studies have provided evidence for a link between the gut-brain axis and mood disorders. However, the effects of 5-HTT deficiency on gut microbiota, brain function, and behavior remain to be fully characterized. Here we investigated the effects of 5-HTT deficiency on different types of behavior, the gut microbiome, and brain c-Fos expression as a marker of neuronal activation in response to the forced swim test for assessing depression-related behavior in male 5-HTT knockout mice. Behavioral analysis using a battery of 16 different tests showed that 5-HTT-/- mice exhibited markedly reduced locomotor activity, decreased pain sensitivity, reduced motor function, increased anxiety-like and depression-related behavior, altered social behavior in novel and familiar environments, normal working memory, enhanced spatial reference memory, and impaired fear memory compared to 5-HTT+/+ mice. 5-HTT+/- mice showed slightly reduced locomotor activity and impaired social behavior compared to 5-HTT+/+ mice. Analysis of 16S rRNA gene amplicons showed that 5-HTT-/- mice had altered gut microbiota abundances, such as a decrease in Allobaculum, Bifidobacterium, Clostridium sensu stricto, and Turicibacter, compared to 5-HTT+/+ mice. This study also showed that after exposure to the forced swim test, the number of c-Fos-positive cells was higher in the paraventricular thalamus and lateral hypothalamus and was lower in the prefrontal cortical regions, nucleus accumbens shell, dorsolateral septal nucleus, hippocampal regions, and ventromedial hypothalamus in 5-HTT-/- mice than in 5-HTT+/+ mice. These phenotypes of 5-HTT-/- mice partially recapitulate clinical observations in humans with major depressive disorder. The present findings indicate that 5-HTT-deficient mice serve as a good and valid animal model to study anxiety and depression with altered gut microbial composition and abnormal neuronal activity in the brain, highlighting the importance of 5-HTT in brain function and the mechanisms underlying the regulation of anxiety and depression.
  • Shohei Iida, Hirotaka Shoji, Fumihiro Kawakita, Takehisa Nakanishi, Yoshiaki Matsushima, Makoto Kondo, Koji Habe, Hidenori Suzuki, Tsuyoshi Miyakawa, Keiichi Yamanaka
    International journal of molecular sciences, 24(6), Mar 21, 2023  Peer-reviewed
    Intense itching significantly reduces the quality of life, and atopic dermatitis is associated with psychiatric conditions, such as anxiety and depression. Psoriasis, another inflammatory skin disease, is often complicated by psychiatric symptoms, including depression; however, the pathogenesis of these mediating factors is poorly understood. This study used a spontaneous dermatitis mouse model (KCASP1Tg) and evaluated the psychiatric symptoms. We also used Janus kinase (JAK) inhibitors to manage the behaviors. Gene expression analysis and RT-PCR of the cerebral cortex of KCASP1Tg and wild-type (WT) mice were performed to examine differences in mRNA expression. KCASP1Tg mice had lower activity, higher anxiety-like behavior, and abnormal behavior. The mRNA expression of S100a8 and Lipocalin 2 (Lcn2) in the brain regions was higher in KCASP1Tg mice. Furthermore, IL-1β stimulation increased Lcn2 mRNA expression in astrocyte cultures. KCASP1Tg mice had predominantly elevated plasma Lcn2 compared to WT mice, which improved with JAK inhibition, but behavioral abnormalities in KCASP1Tg mice did not improve, despite JAK inhibition. In summary, our data revealed that Lcn2 is closely associated with anxiety symptoms, but the anxiety and depression symptoms caused by chronic skin inflammation may be irreversible. This study demonstrated that active control of skin inflammation is essential for preventing anxiety.

Misc.

 5

Presentations

 1

Teaching Experience

 2
  • Apr, 2020 - Present
    .  (Fujita Health University)
  • Apr, 2020 - Present
    アセンブリ1  (藤田医科大学)