Curriculum Vitaes
Profile Information
- Affiliation
- Senior Assistant Professor, Center for Medical Science, Fujita Health University
- Degree
- Ph.D.(The University of Tokyo)
- Contact information
- hkeisuke
fujita-hu.ac.jp - Researcher number
- 10508469
- ORCID ID
https://orcid.org/0000-0002-7300-5238- J-GLOBAL ID
- 200901097490734327
- researchmap Member ID
- 6000011163
- External link
The role of ncRNA (microRNA and lncRNA) and enzymes (DUB etc) in skeletal muscle differentiation, hypertrophy, and atrophy.
Research Interests
18Research Areas
3Research History
4Committee Memberships
4-
Jun, 2023 - Present
-
Jan, 2021 - Present
-
Sep, 2020 - Present
-
Apr, 2020 - Present
Awards
5Papers
63-
Oxygen, 5(2) 4, Apr 18, 2025 Peer-reviewed
-
Cells, 14(7), Apr 3, 2025 Peer-reviewedThe role of a simulated microgravity environment on soybean growth was investigated. The root grew more under simulated microgravity conditions than in the presence of gravity. However, root shortening due to salt stress did not occur in simulated microgravity conditions. To reveal these mechanisms by simulated microgravity environment on soybean root, a proteomic analysis was conducted. Proteomic analysis revealed that among 1547 proteins, the abundances of proteins related to phytohormone, oxidative stress, ubiquitin/proteasome system, cell organization, and cell wall organization were altered under stimulated microgravity compared with gravity. Membrane-localized proteins and redox-related proteins were inversely correlated in protein numbers due to salt stress under gravity and the simulated microgravity condition. Proteins identified by proteomics were validated for protein accumulation by immunoblot analysis. Superoxide dismutase and ascorbate peroxidases, which are reactive oxygen species-scavenging proteins, increased in soybean root under salt stress but not in the simulated microgravity conditions even under stress. The accumulation of 45 kDa aquaporin and 70 kDa calnexin in soybean root under salt stress were increased in the simulated microgravity conditions compared to gravity. These findings suggest that soybean growth under salt stress may be regulated through improved water permeability, mitigation of reactive oxygen species production, and restoration of protein folding under simulated microgravity conditions.
-
Journal of Proteome Data and Methods, 7 2, Apr, 2025 Peer-reviewedLead authorCorresponding author
-
Protein-Based Mechanism of Wheat Growth Under Salt Stress in Seeds Irradiated with Millimeter Waves.International journal of molecular sciences, 26(1) 253, Dec 30, 2024 Peer-reviewedWheat is one of the most extensively grown crops in the world; however, its productivity is reduced due to salinity. This study focused on millimeter wave (MMW) irradiation to clarify the salt-stress tolerance mechanism in wheat. In the present study, wheat-root growth, which was suppressed to 77.6% of the control level under salt stress, was recovered to the control level by MMW irradiation. To reveal the salt-stress tolerance mechanism of MMW irradiation on wheat, a proteomic analysis was conducted. Proteins related to cell cycle, proliferation, and transport in biological processes, as well as proteins related to the nucleus, cytoskeleton, and cytoplasm within cellular components, were inversely correlated with the number of proteins. The results of the proteomic analysis were verified by immunoblot and other analyses. Among the proteins related to the scavenging reactive-oxygen species, superoxide dismutase and glutathione reductase accumulated under salt stress and further increased in the MMW-irradiated wheat. Among pathogen-related proteins, pathogenesis-related protein 1 and the Bowman-Birk proteinase inhibitor decreased under salt stress and recovered to the control level in the MMW-irradiated wheat. The present results indicate that MMW irradiation of wheat seeds improves plant-growth recovery from salt stress through regulating the reactive oxygen species-scavenging system and the pathogen-related proteins. These genes may contribute to the development of salt-stress-tolerant wheat through marker-assisted breeding and genome editing.
-
International journal of molecular sciences, 25(15), Jul 27, 2024 Peer-reviewedSalt stress is a serious problem, because it reduces the plant growth and seed yield of wheat. To investigate the salt-tolerant mechanism of wheat caused by plant-derived smoke (PDS) solution, metabolomic and proteomic techniques were used. PDS solution, which repairs the growth inhibition of wheat under salt stress, contains metabolites related to flavonoid biosynthesis. Wheat was treated with PDS solution under salt stress and proteins were analyzed using a gel-free/label-free proteomic technique. Oppositely changed proteins were associated with protein metabolism and signal transduction in biological processes, as well as mitochondrion, endoplasmic reticulum/Golgi, and plasma membrane in cellular components with PDS solution under salt stress compared to control. Using immuno-blot analysis, proteomic results confirmed that ascorbate peroxidase increased with salt stress and decreased with additional PDS solution; however, H+-ATPase displayed opposite effects. Ubiquitin increased with salt stress and decreased with additional PDS solution; nevertheless, genomic DNA did not change. As part of mitochondrion-related events, the contents of ATP increased with salt stress and recovered with additional PDS solution. These results suggest that PDS solution enhances wheat growth suppressed by salt stress through the regulation of energy metabolism and the ubiquitin-proteasome system related to flavonoid metabolism.
-
International journal of molecular sciences, 24(18), Sep 6, 2023 Peer-reviewedSalt stress of soybean is a serious problem because it reduces plant growth and seed yield. To investigate the salt-tolerant mechanism of soybean, a plant-derived smoke (PDS) solution was used. Three-day-old soybeans were subjected to PDS solution under 100 mM NaCl for 2 days, resulting in PDS solution improving soybean root growth, even under salt stress. Under the same condition, proteins were analyzed using the proteomic technique. Differential abundance proteins were associated with transport/formaldehyde catabolic process/sucrose metabolism/glutathione metabolism/cell wall organization in the biological process and membrane/Golgi in the cellular component with or without PDS solution under salt stress. Immuno-blot analysis confirmed that osmotin, alcohol dehydrogenase, and sucrose synthase increased with salt stress and decreased with additional PDS solution; however, H+ATPase showed opposite effects. Cellulose synthase and xyloglucan endotransglucosylase/hydrolase increased with salt and decreased with additional PDS solution. Furthermore, glycoproteins decreased with salt stress and recovered with additional treatment. As mitochondrion-related events, the contents of ATP and gamma-aminobutyric acid increased with salt stress and recovered with additional treatment. These results suggest that PDS solution improves the soybean growth by alleviating salt stress. Additionally, the regulation of energy metabolism, protein glycosylation, and cell wall construction might be an important factor for the acquisition of salt tolerance in soybean.
-
Journal of diabetes investigation, Jun 9, 2023 Peer-reviewedAIMS/INTRODUCTION: Glucagon is secreted from pancreatic α-cells and plays an important role in amino acid metabolism in liver. Various animal models deficient in glucagon action show hyper-amino acidemia and α-cell hyperplasia, indicating that glucagon contributes to feedback regulation between the liver and the α-cells. In addition, both insulin and various amino acids, including branched-chain amino acids and alanine, participate in protein synthesis in skeletal muscle. However, the effect of hyperaminoacidemia on skeletal muscle has not been investigated. In the present study, we examined the effect of blockade of glucagon action on skeletal muscle using mice deficient in proglucagon-derived peptides (GCGKO mice). MATERIALS AND METHODS: Muscles isolated from GCGKO and control mice were analyzed for their morphology, gene expression and metabolites. RESULTS: GCGKO mice showed muscle fiber hypertrophy, and a decreased ratio of type IIA and an increased ratio of type IIB fibers in the tibialis anterior. The expression levels of myosin heavy chain (Myh) 7, 2, 1 and myoglobin messenger ribonucleic acid were significantly lower in GCGKO mice than those in control mice in the tibialis anterior. GCGKO mice showed a significantly higher concentration of arginine, asparagine, serine and threonine in the quadriceps femoris muscles, and also alanine, aspartic acid, cysteine, glutamine, glycine and lysine, as well as four amino acids in gastrocnemius muscles. CONCLUSIONS: These results show that hyperaminoacidemia induced by blockade of glucagon action in mice increases skeletal muscle weight and stimulates slow-to-fast transition in type II fibers of skeletal muscle, mimicking the phenotype of a high-protein diet.
-
PloS one, 18(4) e0283942, 2023 Peer-reviewedBACKGROUND: Circulating microRNAs (miRNAs, miR) have been considered as biomarkers reflecting the underlying pathophysiology in atrial fibrillation (AF). Nevertheless, miRNA expression in the peripheral blood samples might not reflect a cardiac phenomenon since most miRNAs are expressed in numerous organs. This study aimed to identify the cardiac-specific circulating miRNAs as biomarkers for AF. METHODS: Plasma samples were obtained from a luminal coronary sinus catheter (CS, cardiac-specific samples) and femoral venous sheath (FV, peripheral samples) in patients with AF and paroxysmal supraventricular tachycardia (control, CTL) undergoing catheter ablation. The circulating miRNA profiles were analyzed by small RNA sequencing. Differently expressed miRNAs between AF and CTL were identified in each sample of the CS and FV; miRNAs exhibiting similar expression patterns in the CS and FV samples were selected as candidates for cardiac-specific biomarkers. The selected miRNAs were related to the outcome of catheter ablation of AF. RESULTS: Small RNA sequencing detected 849 miRNAs. Among the top 30 most differently expressed miRNAs between AF and CTL, circulating hsa-miR-20b-5p, hsa-miR-330-3p, and hsa-miR-204-5p had a similar pattern in the CS and FV samples. Another set of peripheral blood samples was obtained from AF patients undergoing catheter ablation (n = 141). The expression of the miR-20b-5p and miR-330-3p, but not the miR-204-5p, negatively correlated with the echocardiographic left-atrial dimension and was decreased in patients with AF recurrence as compared to those without AF recurrence during a 1-year follow-up. CONCLUSION: Circulating miR-20b-5p and miR-330-3p can be cardiac-specific biomarkers for atrial remodeling progression and arrhythmia recurrence after catheter ablation in AF patients.
-
FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 37(1) e22692, Jan, 2023 Peer-reviewedLead authorCorresponding authorThe skeletal muscle myosin heavy chain (MyHC) is a fundamental component of the sarcomere structure and muscle contraction. Two of the three adult fast MyHCs, MyHC-IIx and MyHC-IIb, are encoded by Myh1 and Myh4, respectively. However, skeletal muscle disorders have not yet been linked to these genes in humans. MyHC-IIb is barely detectable in human skeletal muscles. Thus, to characterize the molecular function of skeletal muscle MyHCs in humans, investigation of the effect of simultaneous loss of MyHC-IIb and other MyHCs on skeletal muscle in mice is essential. Here, we generated double knockout (dKO) mice with simultaneous loss of adult fast MyHCs by introducing nonsense frameshift mutations into the Myh1 and Myh4 genes. The dKO mice appeared normal after birth and until 2 weeks of age but showed severe skeletal muscle hypoplasia after 2 weeks. In 3-week-old dKO mice, increased expression of other skeletal muscle MyHCs, such as MyHC-I, MyHC-IIa, MyHC-neo, and MyHC-emb, was observed. However, these expressions were not sufficient to compensate for the loss of MyHC-IIb and MyHC-IIx. Moreover, the aberrant sarcomere structure with altered expression of sarcomere components was observed in dKO mice. Our findings imply that the simultaneous loss of MyHC-IIb and MyHC-IIx is substantially detrimental to postnatal skeletal muscle function and will contribute to elucidating the molecular mechanisms of skeletal muscle wasting disorders caused by the loss of skeletal muscle MyHCs.
-
International Journal of Molecular Sciences, Sep 8, 2022 Peer-reviewed
-
Journal of clinical medicine, 11(15), Aug 7, 2022 Peer-reviewedBACKGROUND: FLT1 is one of the significantly overexpressed genes found in a pre-eclamptic placenta and is involved with the etiology of this disease. METHODS: We conducted genome-wide expression profiling by RNA-seq of placentas from women with pre-eclampsia and those with normotensive pregnancy. RESULTS: We identified a lncRNA gene, MG828507, located ~80 kb upstream of the FLT1 gene in a head-to-head orientation, which was overexpressed in the pre-eclamptic placenta. MG828507 and FLT1 are located within the same topologically associated domain in the genome. The MG828507 mRNA level correlated with that of the FLT1 in placentas from pre-eclamptic women as well as in samples from uncomplicated pregnancies. However, neither the overexpression nor knockdown of MG828507 affected the expression of FLT1. Analysis of pre-eclampsia-linking genetic variants at this locus suggested that the placental genotype of one variant was associated with the expression of MG828507. The MG828507 transcript level was not found to be associated with maternal blood pressure, but showed a relationship with birth and placental weights, suggesting that this lncRNA might be one of the pivotal placental factors in pre-eclampsia. CONCLUSION: Further characterization of the MG828507 gene may elucidate the etiological roles of the MG828507 and FLT1 genes in pre-eclampsia in a genomic context.
-
Journal of Plant Growth Regulation, 42(4) 2570-2584, Aug 1, 2022 Peer-reviewed
-
Cells, 11(15) 2291-2291, Jul 25, 2022 Peer-reviewedInvitedLead authorCorresponding authorSkeletal muscle is a pivotal organ in humans that maintains locomotion and homeostasis. Muscle atrophy caused by sarcopenia and cachexia, which results in reduced muscle mass and impaired skeletal muscle function, is a serious health condition that decreases life longevity in humans. Recent studies have revealed the molecular mechanisms by which long non-coding RNAs (lncRNAs) regulate skeletal muscle mass and function through transcriptional regulation, fiber-type switching, and skeletal muscle cell proliferation. In addition, lncRNAs function as natural inhibitors of microRNAs and induce muscle hypertrophy or atrophy. Intriguingly, muscle atrophy modifies the expression of thousands of lncRNAs. Therefore, although their exact functions have not yet been fully elucidated, various novel lncRNAs associated with muscle atrophy have been identified. Here, we comprehensively review recent knowledge on the regulatory roles of lncRNAs in skeletal muscle atrophy. In addition, we discuss the issues and possibilities of targeting lncRNAs as a treatment for skeletal muscle atrophy and muscle wasting disorders in humans.
-
International journal of molecular sciences, 23(13), Jul 3, 2022 Peer-reviewedNanoparticles (NPs) enhance soybean growth; however, their precise mechanism is not clearly understood. To develop a more effective method using NPs for the enhancement of soybean growth, fiber crosslinked with zinc oxide (ZnO) NPs was prepared. The solution of ZnO NPs with 200 nm promoted soybean growth at the concentration of 10 ppm, while fibers crosslinked with ZnO NPs promoted growth at a 1 ppm concentration. Soybeans grown on fiber cross-linked with ZnO NPs had higher Zn content in their roots than those grown in ZnO NPs solution. To study the positive mechanism of fiber crosslinked with ZnO NPs on soybean growth, a proteomic technique was used. Proteins categorized in photosynthesis and secondary metabolism accumulated more in soybeans grown on fiber crosslinked with ZnO NPs than in those grown in ZnO NPs solution. Furthermore, significantly accumulated proteins, which were NADPH oxidoreductase and tubulins, were confirmed using immunoblot analysis. The abundance of NADPH oxidoreductase increased in soybean by ZnO NPs application. These results suggest that fiber crosslinked with ZnO NPs enhances soybean growth through the increase of photosynthesis and secondary metabolism. Additionally, the accumulation of NADPH oxidoreductase might relate to the effect of auxin with fiber crosslinked with ZnO NPs on soybean growth.
-
Plants (Basel, Switzerland), 11(11), Jun 4, 2022 Peer-reviewedWheat is an important staple food crop for one-third of the global population; however, its growth is reduced by flooding. On the other hand, a plant-derived smoke solution enhances plant growth; however, its mechanism is not fully understood. To reveal the effects of the plant-derived smoke solution on wheat under flooding, morphological, biochemical, and proteomic analyses were conducted. The plant-derived smoke solution improved wheat-leaf growth, even under flooding. According to the functional categorization of proteomic results, oppositely changed proteins were correlated with photosynthesis, glycolysis, biotic stress, and amino-acid metabolism with or without the plant-derived smoke solution under flooding. Immunoblot analysis confirmed that RuBisCO activase and RuBisCO large/small subunits, which decreased under flooding, were recovered by the application of the plant-derived smoke solution. Furthermore, the contents of chlorophylls a and b significantly decreased by flooding stress; however, they were recovered by the application of the plant-derived smoke solution. In glycolysis, fructose-bisphosphate aldolase and glyceraldehyde-3-phosphate dehydrogenase decreased with the application of the plant-derived smoke solution under flooding as compared with flooding alone. Additionally, glutamine, glutamic acid, aspartic acid, and serine decreased under flooding; however, they were recovered by the plant-derived smoke solution. These results suggest that the application of the plant-derived smoke solution improves the recovery of wheat growth through the regulation of photosynthesis and glycolysis even under flooding conditions. Furthermore, the plant-derived smoke solution might promote wheat tolerance against flooding stress through the regulation of amino-acid metabolism.
-
Cells, 11(9), May 7, 2022 Peer-reviewedWheat is vulnerable to numerous diseases; on the other hand, silver nanoparticles (AgNPs) exhibit a sterilizing action. To understand the combined effects of AgNPs with nicotinate and potassium nitrate (KNO3) for plant growth and sterilization, a gel- and label-free proteomics was performed. Root weight was promoted by the treatment of AgNPs mixed with nicotinate and KNO3. From a total of 5557 detected proteins, 90 proteins were changed by the mixture of AgNPs, nicotinate, and KNO3; among them, 25 and 65 proteins increased and decreased, respectively. The changed proteins were mainly associated with redox and biotic stress in the functional categorization. By immunoblot analysis, the abundance of glutathione reductase/peroxiredoxin and pathogen-related protein three significantly decreased with the mixture. Furthermore, from the changed proteins, the abundance of starch synthase and lipoxygenase significantly increased and decreased, respectively. Through biochemical analysis, the starch contents increased with the mixture. The application of esculetin, which is a lipoxygenase inhibitor, increased the weight and length of the root. These results suggest that the AgNPs mixed with nicotinate and KNO3 cause positive effects on wheat seedlings by regulating pathogen-related protein and reactive-oxygen species scavenging. Furthermore, increasing starch and decreasing lipoxygenase might improve wheat growth.
-
ACS medicinal chemistry letters, 13(3) 492-498, Mar 10, 2022 Peer-reviewedMyostatin is a key negative regulator of skeletal muscle growth, and myostatin inhibitors are attractive tools for the treatment of muscular atrophy. Previously, we reported a series of 14-29-mer peptide myostatin inhibitors, including a potent derivative, MIPE-1686, a 16-mer N-terminal-free l-peptide with three unnatural amino acids and a propensity to form β-sheets. However, the in vivo biological stability of MIPE-1686 is a concern for its development as a drug. In the present study, to develop a more stable myostatin inhibitory d-peptide (MID), we synthesized various retro-inverso versions of a 16-mer peptide. Among these, an arginine-containing derivative, MID-35, shows a potent and equivalent in vitro myostatin inhibitory activity equivalent to that of MIPE-1686 and considerable stability against biodegradation. The in vivo potency of MID-35 to increase the tibialis anterior muscle mass in mice is significantly enhanced over that of MIPE-1686, and MID-35 can serve as a new entity for the prolonged inactivation of myostatin in skeletal muscle.
-
International journal of molecular sciences, 23(1) 108, Dec 21, 2021 Peer-reviewedLead authorRNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of heterogeneous nuclear ribonucleoprotein K (hnRNPK) for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level. The hnRNPK-binding region of Myoparr was required to repress myogenin expression. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays lncRNA-associated and -independent multiple roles during myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.
-
Journal of proteome research, 20(10) 4718-4727, Oct 1, 2021 Peer-reviewedChickpea cultivated on marginal lands in arid and semiarid tropics is one of the food legumes, and its growth is reduced by flooding stress. Millimeter-wave irradiation has influences on organisms, and it improves the growth of plants such as soybean. To reveal the dynamic effects of millimeter-wave irradiation on chickpea under flooding, gel- and label-free proteomic analysis was conducted. Millimeter-wave irradiation improved chickpea growth and its tolerance to flooding stress. According to functional categorization, oppositely changed proteins were correlated with photosynthesis, fermentation, and protein degradation. Immunoblot analysis confirmed that RuBisCO activase and large subunits decreased in leaves under flooding; however, they are recovered in irradiated chickpea even if it was in this condition. The activity and accumulation of alcohol dehydrogenase increased in roots under flooding; however, this followed the same pattern. Cell death was significantly increased and decreased by flooding on unirradiated and irradiated chickpeas, respectively. These findings suggest that irradiation with millimeter waves on chickpea seeds improves the recovery of plant growth through regulation of photosynthesis in leaves and fermentation in roots. Furthermore, millimeter-wave irradiation might promote chickpea tolerance under flooding via the regulation of cell death.
-
International journal of molecular sciences, 22(16), Aug 22, 2021 Peer-reviewedTo investigate the mechanism of flooding tolerance of soybean, flooding-tolerant mutants derived from gamma-ray irradiated soybean were crossed with parent cultivar Enrei for removal of other factors besides the genes related to flooding tolerance in primary generated mutant soybean. Although the growth of the wild type was significantly suppressed by flooding compared with the non-flooding condition, that of the mutant lines was better than that of the wild type even if it was treated with flooding. A two-day-old mutant line was subjected to flooding for 2 days and proteins were analyzed using a gel-free/label-free proteomic technique. Oppositely changed proteins in abundance between the wild type and mutant line under flooding stress were associated in endoplasmic reticulum according to gene-ontology categorization. Immunoblot analysis confirmed that calnexin accumulation increased in both the wild type and mutant line; however, calreticulin accumulated in only the mutant line under flooding stress. Furthermore, although glycoproteins in the wild type decreased by flooding compared with the non-flooding condition, those in the mutant line increased even if it was under flooding stress. Alcohol dehydrogenase accumulated in the wild type and mutant line; however, this enzyme activity significantly increased and mildly increased in the wild type and mutant line, respectively, under flooding stress compared with the non-flooding condition. Cell death increased and decreased in the wild type and mutant line, respectively, by flooding stress. These results suggest that the regulation of cell death through the fermentation system and glycoprotein folding might be an important factor for the acquisition of flooding tolerance in mutant soybean.
-
International journal of molecular sciences, 22(5), Mar 4, 2021 Peer-reviewedInvitedLead authorThe loss of skeletal muscle mass (muscle atrophy or wasting) caused by aging, diseases, and injury decreases quality of life, survival rates, and healthy life expectancy in humans. Although long non-coding RNAs (lncRNAs) have been implicated in skeletal muscle formation and differentiation, their precise roles in muscle atrophy remain unclear. In this study, we used RNA-sequencing (RNA-Seq) to examine changes in the expression of lncRNAs in four muscle atrophy conditions (denervation, casting, fasting, and cancer cachexia) in mice. We successfully identified 33 annotated lncRNAs and 18 novel lncRNAs with common expression changes in all four muscle atrophy conditions. Furthermore, an analysis of lncRNA-mRNA correlations revealed that several lncRNAs affected small molecule biosynthetic processes during muscle atrophy. These results provide novel insights into the lncRNA-mediated regulatory mechanism underlying muscle atrophy and may be useful for the identification of promising therapeutic targets.
-
PeerJ, 9 e10879, Feb, 2021 Peer-reviewedDrought is one of the severe environmental stresses threatening agriculture around the globe. Nitric oxide plays diverse roles in plant growth and defensive responses. Despite a few studies supporting the role of nitric oxide in plants under drought responses, little is known about its pivotal molecular amendment in the regulation of stress signaling. In this study, a label-free nano-liquid chromatography-mass spectrometry approach was used to determine the effects of sodium nitroprusside (SNP) on polyethylene glycol (PEG)-induced osmotic stress in banana roots. Plant treatment with SNP improved plant growth and reduced the percentage of yellow leaves. A total of 30 and 90 proteins were differentially identified in PEG+SNP against PEG and PEG+SNP against the control, respectively. The majority of proteins differing between them were related to carbohydrate and energy metabolisms. Antioxidant enzyme activities, such as superoxide dismutase and ascorbate peroxidase, decreased in SNP-treated banana roots compared to PEG-treated banana. These results suggest that the nitric oxide-induced osmotic stress tolerance could be associated with improved carbohydrate and energy metabolism capability in higher plants.
-
Plants (Basel, Switzerland), 10(1), Jan 8, 2021 Peer-reviewedOpuntia spp. is an economically important vegetable crop with high stress-tolerance and health benefits. However, proteomic analysis of the plant has been difficult due to the composition of its succulent cladodes; the abundant polysaccharides interfere with protein extraction. To facilitate proteomic analysis of this plant, we present a rapid and simple protein extraction method for Opuntia ficus-indica (L.) Miller. The optimized method produced highly reproducible protein patterns and was compatible with a gel-free quantitative workflow without the need for additional purification. We successfully analyzed the cladode mesocarp and exocarp tissues, resulting in the identification of 319 proteins. In addition, we used this method to examine the relative changes in the Opuntia proteome in response to salt stress to determine whether physiological changes could be captured. Qualified observations were obtained, revealing that salt stress increased phosphoenolpyruvate carboxylase abundance and decreased ribulose-bisphosphate carboxylase in young O. ficus-indica plants. These findings suggest that Crassulacean acid metabolism is promoted under salinity. This study highlights the efficacy of our optimized protein extraction method for elucidating the metabolic adaptations of Opuntia using gel-free proteomic analysis.
-
The Journal of clinical investigation, 131(1), Jan 4, 2021 Peer-reviewedAge-related sarcopenia constitutes an important health problem associated with adverse outcomes. Sarcopenia is closely associated with fat infiltration in muscle, which is attributable to interstitial mesenchymal progenitors. Mesenchymal progenitors are nonmyogenic in nature but are required for homeostatic muscle maintenance. However, the underlying mechanism of mesenchymal progenitor-dependent muscle maintenance is not clear, nor is the precise role of mesenchymal progenitors in sarcopenia. Here, we show that mice genetically engineered to specifically deplete mesenchymal progenitors exhibited phenotypes markedly similar to sarcopenia, including muscle weakness, myofiber atrophy, alterations of fiber types, and denervation at neuromuscular junctions. Through searching for genes responsible for mesenchymal progenitor-dependent muscle maintenance, we found that Bmp3b is specifically expressed in mesenchymal progenitors, whereas its expression level is significantly decreased during aging or adipogenic differentiation. The functional importance of BMP3B in maintaining myofiber mass as well as muscle-nerve interaction was demonstrated using knockout mice and cultured cells treated with BMP3B. Furthermore, the administration of recombinant BMP3B in aged mice reversed their sarcopenic phenotypes. These results reveal previously unrecognized mechanisms by which the mesenchymal progenitors ensure muscle integrity and suggest that age-related changes in mesenchymal progenitors have a considerable impact on the development of sarcopenia.
-
藤田学園医学会誌, 44(1) 23-27, Dec, 2020 InvitedLead authorCorresponding author
-
Journal of medicinal food, 23(9) 967-977, Sep, 2020 Peer-reviewedMung bean (Vigna radiata) is an immunomodulatory medicinal plant, which is recognized as a component of a traditional postpartum diet. The liver plays a crucial role in fatty acid synthesis under the control of various hormones that are affected by pregnancy. This study was designed to establish whether the mung bean water extract, which contains prostaglandins that can regulate corpus luteum maturation, provided any benefits to liver metabolism after the dynamic hormonal change associated with pregnancy. Female C57BL/6J mice were used, and all mice received daily injections of progesterone (5.0 mg/kg) for 5 days, after which progesterone was withdrawn for 3 days. Gel-free/label-free proteomic analysis revealed that the abundance of several proteins was affected in the liver. Hormone manipulation induced changes in lipid metabolism-related protein abundance; oral administration of mung bean coat extract (MBC) for 3 days mitigated the changes and downregulated the expression of Cpt1α, Akr1β, and Srebp1 in the liver. Together with immunological leukocyte modulation assessed via proteomic analysis, we suggest that MBC may exert health-promoting effects through the modulation of lipid synthesis during postpartum recovery.
-
Journal of proteomics, 224 103833-103843, May 22, 2020 Peer-reviewedNanoparticles (NPs) are synthesized by different methods and response mechanism of plants varied towards NPs based on their origin. To study the effects of bio-synthesized (BS) and chemically-synthesized (CS) silver NPs on soybean, a gel-free/label-free proteomic technique was used. Length of root and hypocotyl was enhanced by BS compared to CS silver NPs. 10 ppm BS silver NPs enhanced the length of root and hypocotyl compared to 1 and 50 ppm. A total of 190 and 173 differentially changed proteins were identified in BS and CS silver NPs treated soybean, respectively. Twenty proteins commonly changed between BS and CS silver NPs treated soybean. Differentially-changed proteins were associated with protein-degradation and stress according to functional categorization. From proteomics, abundances of peroxidases were increased under CS silver NPs. Immunoblot analysis depicted that accumulation of ascorbate peroxidase, glutathione reductase, and peroxiredoxin remained unchanged under both BS and CS silver NPs. ATP content decreased under CS silver NPs compared to BS silver NPs. ADH activity increased in CS silver NPs treated soybean. These results suggest that BS silver NPs enhanced the growth of soybean by regulating proteins related to protein-degradation and ATP contents, which are negatively affected by CS silver NPs. BIOLOGICAL SIGNIFICANCE: This study highlighted the response mechanism of soybean towards green synthesized (GS) and chemically synthesized (CS) silver nanoparticles (NPs) using a gel-free/ label-free proteomics technique. Length of root and hypocotyl was enhanced by GS silver NPs compared to CS silver NPs. 10 ppm GS silver NPs enhanced the length of root and hypocotyl compared to other concentrations. Differentially changed proteins were associated with protein degradation and stress. From the proteomics, the abundances of peroxidases were increased under CS silver NPs. Immunoblot analysis depicted that accumulation of ascorbate peroxidase, glutathione reductase, and peroxiredoxin remained unchanged under both GS and CS silver NPs. ATP content decreased under CS silver NPs compared to GS silver NPs. ADH activity increased in CS silver NPs compared to GS silver NPs treated soybean. These results suggest that the GS silver NPs enhanced the growth of soybean by regulating the proteins related to protein degradation and ATP contents, which are negatively affected by the CS silver NPs.
-
Frontiers in cell and developmental biology, 8 267-267, May, 2020 Peer-reviewedAdult skeletal muscle has a remarkable ability to regenerate. Regeneration of mature muscle fibers is dependent on muscle stem cells called satellite cells. Although they are normally in a quiescent state, satellite cells are rapidly activated after injury, and subsequently proliferate and differentiate to make new muscle fibers. Myogenesis is a highly orchestrated biological process and has been extensively studied, and therefore many parameters that can precisely evaluate regenerating events have been established. However, in some cases, it is necessary to evaluate the completion of regeneration rather than ongoing regeneration. In this study, we establish methods for assessing the myofiber maturation during muscle regeneration. By carefully comparing expression patterns of several muscle regeneration-related genes, we found that expression of Myozenin (Myoz1 and Myoz3), Troponin I (Tnni2), and Dystrophin (Dmd) is gradually increased as muscle regeneration proceeds. In contrast, commonly used regeneration markers such as Myh3 and Myh8 are transiently upregulated after muscle injury but their expression decreases as regeneration progresses. Intriguingly, upregulation of Myoz1, Myoz3 and Tnni2 cannot be achieved in cultured myotubes, indicating that these markers are excellent indicators to assess myofiber maturity. We also show that analyzing re-expression of Myoz1 and dystrophin in individual fiber during regeneration enables accurate assessment of myofiber maturity at the single-myofiber level. Together, our study provides valuable methods that are useful in evaluating muscle regeneration and the efficacy of therapeutic strategies for muscle diseases.
-
International journal of molecular sciences, 21(5), Feb 27, 2020 Peer-reviewedInvitedLead authorSkeletal muscle is a highly plastic organ that is necessary for homeostasis and health of the human body. The size of skeletal muscle changes in response to intrinsic and extrinsic stimuli. Although protein-coding RNAs including myostatin, NF-κβ, and insulin-like growth factor-1 (IGF-1), have pivotal roles in determining the skeletal muscle mass, the role of long non-coding RNAs (lncRNAs) in the regulation of skeletal muscle mass remains to be elucidated. Here, we performed expression profiling of nine skeletal muscle differentiation-related lncRNAs (DRR, DUM1, linc-MD1, linc-YY1, LncMyod, Neat1, Myoparr, Malat1, and SRA) and three genomic imprinting-related lncRNAs (Gtl2, H19, and IG-DMR) in mouse skeletal muscle. The expression levels of these lncRNAs were examined by quantitative RT-PCR in six skeletal muscle atrophy models (denervation, casting, tail suspension, dexamethasone-administration, cancer cachexia, and fasting) and two skeletal muscle hypertrophy models (mechanical overload and deficiency of the myostatin gene). Cluster analyses of these lncRNA expression levels were successfully used to categorize the muscle atrophy models into two sub-groups. In addition, the expression of Gtl2, IG-DMR, and DUM1 was altered along with changes in the skeletal muscle size. The overview of the expression levels of lncRNAs in multiple muscle atrophy and hypertrophy models provides a novel insight into the role of lncRNAs in determining the skeletal muscle mass.
-
Bioorganic & medicinal chemistry letters, 30(3) 126892, Feb, 2020 Peer-reviewed
-
Proteomic Analysis of Irradiation with Millimeter Waves on Soybean Growth under Flooding Conditions.International journal of molecular sciences, 21(2), Jan 12, 2020 Peer-reviewedImproving soybean growth and tolerance under environmental stress is crucial for sustainable development. Millimeter waves are a radio-frequency band with a wavelength range of 1-10 mm that has dynamic effects on organisms. To investigate the potential effects of millimeter-waves irradiation on soybean seedlings, morphological and proteomic analyses were performed. Millimeter-waves irradiation improved the growth of roots/hypocotyl and the tolerance of soybean to flooding stress. Proteomic analysis indicated that the irradiated soybean seedlings recovered under oxidative stress during growth, whereas proteins related to glycolysis and ascorbate/glutathione metabolism were not affected. Immunoblot analysis confirmed the promotive effect of millimeter waves to glycolysis- and redox-related pathways under flooding conditions. Sugar metabolism was suppressed under flooding in unirradiated soybean seedlings, whereas it was activated in the irradiated ones, especially trehalose synthesis. These results suggest that millimeter-waves irradiation on soybean seeds promotes the recovery of soybean seedlings under oxidative stress, which positively regulates soybean growth through the regulation of glycolysis and redox related pathways.
-
Frontiers in Sports and Active Living, 1 41-41, Oct, 2019 Peer-reviewedLead author
-
Journal of proteome research, 18(9) 3328-3341, Jul, 2019 Peer-reviewed
-
Data in Brief, 25 104172, Jul, 2019 Peer-reviewedLead author
-
Non-coding RNA, 5(2), Apr, 2019 Peer-reviewedLead author
-
International journal of molecular sciences, 20(6), Mar, 2019 Peer-reviewed
-
Journal of cellular physiology, Feb, 2019 Peer-reviewed
-
International journal of molecular sciences, 20(4), Feb, 2019 Peer-reviewed
-
Biomedical Sciences, 5(1) 7-7, 2019 Peer-reviewed
-
EMBO reports, Jan, 2019 Peer-reviewedLead author
-
Nature Communications, 9(1) 3936, Sep, 2018 Peer-reviewed
-
Journal of Translational Science, 5(5) 1-3, Aug, 2018 Peer-reviewed
-
Biomedical Sciences, 4(2) 18-23, Aug, 2018 Peer-reviewed
-
Journal of proteomics, 181 238-248, Apr, 2018 Peer-reviewedFlooding negatively affects the growth of soybean, whereas the plant-derived smoke enhances seedling growth of crops. To clarify the mechanism underlying the recovery from flooding stress, proteomic analysis was performed based on morphological results. Growth of soybean seedlings was inhibited under flooding stress, but it recovered after water removal following treatment with plant-derived smoke. Sucrose/starch metabolism and glycolysis were suppressed in smoke-treated flooded soybean compared to flooded soybean. The protein abundance and gene expression of O-fucosyltransferase family proteins related to the cell wall were higher in smoke-treated flooded soybean than in flooded soybean. Protein abundance and gene expression of peptidyl-prolyl cis-trans isomerase and Bowman-Birk proteinase isoinhibitor D-II were lower in smoke-treated flooded soybean than in flooded soybean. Taken together, these results suggest that plant-derived smoke enhances soybean growth during recovery from flooding stress through the balance of sucrose/starch metabolism and glycolysis. Furthermore, the accumulation of cell-wall related protein might be an important factor contributing to recovery of soybean from flooding stress. BIOLOGICAL SIGNIFICANCE: Flooding negatively affects the growth of soybean, whereas the plant-derived smoke enhances the seedling growth of crops. To clarify the mechanism underlying the recovery from flooding stress, proteomic analysis of soybean with different treatments including normal conditions, flooding stress, and flooding stress in the presence of plant-derived smoke was performed in this study. Growth of soybean seedlings was inhibited under flooding stress, however, it recovered with plant-derived smoke treatment during recovery from flooding stress. Sucrose/starch metabolism and glycolysis were suppressed in smoke-treated flooded soybean compared to flooded soybean, which suggests altered sucrose/starch metabolism and glycolysis contribute to soybean growth recovery from flood stress. Furthermore, the protein abundance and gene expression of O-fucosyltransferase family proteins related to the cell wall was higher in smoke-treated flooded soybean than in flooded soybean, which might be an important factor contributing to the recovery of soybean from flooding stress.
-
Journal of proteomics, 161 26-37, May, 2017 Peer-reviewedThe immunomodulatory effect of mung bean is mainly attributed to antioxidant properties of flavonoids; however, the precise machinery for biological effect on animal cells remains uncertain. To understand the physiological change produced by mung bean consumption, proteomic and metabolomic techniques were used. In vitro assay confirmed the importance of synergistic interaction among multiple flavonoids by IL-6 expression. Proteomic analysis detected that the abundance of 190 proteins was changed in lipopolysaccharide-stimulated RAW264.7 cells by treatment with coat extract. Pathway mapping revealed that a range of proteins were regulated including an interferon-responsive antiviral enzyme (2'-5'-oligoadenylate synthetase), antigen processing factors (immunoglobulin heavy chain-binding protein and protein disulfide-isomerase), and proteins related to proteasomal degradation. Major histocompatibility complex pathway was activated. These results suggest that mung bean consumption enhances immune response toward a Th2-promoting polarization. BIOLOGICAL SIGNIFICANCE: This study highlighted the immunomodulation of RAW264.7 cells in response to treatment with mung bean seed coat extract, using gel-free proteomic technique. The mechanism of immunomodulation by mung bean has not been described until today except for a report which identified HMGB1 suppression as a pathway underlying the protective effect against sepsis. This study suggested that the mung bean is involved in the regulation of antigen processing and presentation, and thus shifts immune response from acute febrile illness to specific/systemic and long-lasting immunity to protect the host.
-
Oncotarget, 8(4) 5943-5953, Jan, 2017 Peer-reviewedLead authorHighlighted in Biomedical Advances, 2017 #9 http://biomedical-advances.org/musculoskeletal-20175-9/
-
The international journal of biochemistry & cell biology, 47(1) 93-103, Feb, 2014 Peer-reviewedLead authorSelected by Faculty of 1000 recommended https://f1000.com/prime/718213299#abstract
Misc.
1-
Biomedical Advances, Jul, 2017 InvitedEditors' Picks in Musculoskeletal Disorder, 2017 #9
Books and Other Publications
4-
The Chemical Biology of Long Noncoding RNAs. RNA Technologies, vol 11. Springer, Cham., Oct, 2020 (ISBN: 9783030447427)
-
Myostatin: Structure, Role in Muscle Development and Health Implications. Nova Science publishers, 2016 (ISBN: 9781634852487)
Presentations
75Teaching Experience
10-
アセンブリII (実験分子医学研究 Nature を読んでみよう) (藤田医科大学)
-
生命科学総合講義I (明治大学)
-
医学セミナー (藤田保健衛生大学)
-
アセンブリⅡ(サイエンスカフェ) (藤田保健衛生大学)
-
アセンブリⅠ(インターネットチュートリアル) (藤田保健衛生大学)
Research Projects
27-
科学研究費助成事業, 日本学術振興会, Apr, 2025 - Mar, 2029
-
科学研究費助成事業, 日本学術振興会, Apr, 2024 - Mar, 2027
-
科学研究費助成事業, 日本学術振興会, Jun, 2024 - Mar, 2027
-
科学研究費助成事業, 日本学術振興会, Apr, 2023 - Mar, 2026
-
2024年度 医学系研究奨励, 公益財団法人 武田科学振興財団, Jul, 2024 - Mar, 2026
Industrial Property Rights
1Academic Activities
6-
Planning, Management, etc., Panel moderator, Session chair, etc.The 47th annual meeting of the Molecular Biology Society of Japan (MBSJ), Nov 29, 2024
-
Planning, Management, etc., Panel moderator, Session chair, etc.AOMC-JMS 2024, Sep 13, 2024 - Sep 13, 2024
-
Planning, Management, etc., Panel moderator, Session chair, etc.The 46th annual meeting of the Molecular Biology Society of Japan (MBSJ), Dec 7, 2023
-
Planning, Management, etc., Panel moderator, Session chair, etc.The 45th annual meeting of the Molecular Biology Society of Japan (MBSJ), Nov 30, 2022
-
Planning, Management, etc., Panel moderator, Session chair, etc.The 44th annual meeting of the Molecular Biology Society of Japan (MBSJ), Dec 1, 2021
Social Activities
4Media Coverage
4-
EurekAlert!, Dec, 2022 Internet
-
EurekAlert!, Mar, 2022 Internet
Other
1その他教育活動上特記すべき事項
24-
件名(英語)2020年 アセンブリ2活動開始年月日(英語)2020/04/01終了年月日(英語)2020/11/30
-
件名(英語)2020年度 医学部医学研究演習開始年月日(英語)2020/02/03終了年月日(英語)2021/02/26
-
件名(英語)2019年 医療科学部卒業研究指導開始年月日(英語)2019/06/01終了年月日(英語)2019/10/20
-
件名(英語)2018年 医療科学部卒業研究指導概要(英語)「ヒトMettl21e相同遺伝子が偽遺伝子に変化した要因の同定」
-
件名(英語)藤田保健衛生大学医学部FD講演会概要(英語)「良い講義について ~殿堂入りした教員が教える講義の秘訣~」参加
-
件名(英語)藤田保健衛生大学大学院保健学研究科FD研修講演会概要(英語)「鳥取大学医学部における産学連携教育"発明楽"による発想力育成教育の実践」に参加
-
件名(英語)2018年 アセンブリ2活動概要(英語)サイエンスカフェ
-
件名(英語)2017年 医療科学部卒業研究指導概要(英語)「定量的RT-PCRを用いた骨格筋の肥大・萎縮時における長鎖非コードRNAの発現変動 の解析」
-
件名(英語)2017年 医療科学部卒業研究指導概要(英語)「骨格筋細胞を用いた筋量調節に関わる脱ユビキチン化酵素の探索」
-
件名(英語)2017年 アセンブリ2活動概要(英語)サイエンスカフェ
-
件名(英語)2016年 藤田保健衛生大学総医研・最先端医学研究セミナー・大学院医学研究科医学セミナー概要(英語)転写調節領域由来長鎖ノンコーディングRNAを介した遺伝子発現制御機構の解析
-
件名(英語)2016年 アセンブリ1活動概要(英語)インターネットチュートリアル
-
件名(英語)2016年 医療科学部卒業研究指導2名概要(英語)「骨格筋の肥大・萎縮における長鎖ノンコーディングRNAの発現探索」
-
件名(英語)2016年 基礎医学体験実習指導2名概要(英語)実験の指導
-
件名(英語)2015年 医療科学部卒業研究指導2名概要(英語)「医学応用を目指した骨格筋の肥大・萎縮制御に関わる有用分泌因子の探索」
-
件名(英語)2015年 アセンブリ1活動概要(英語)インターネットチュートリアル
-
件名(英語)藤田保健衛生大学医療科学部第2回FD講演会終了年月日(英語)2015/06/02概要(英語)「高大連結の状況について」に参加
-
件名(英語)2014年 サマースチューデント指導概要(英語)医学部大学院生の研究指導
-
件名(英語)2014年 基礎医学体験実習指導概要(英語)実験の指導
-
件名(英語)2014年 藤田保健衛生大学大学院医学研究科・医学セミナー概要(英語)骨格筋細胞の分化における長鎖非コードRNAによる転写調節機構の解析