Yuichi Tanaka, Manzo Suzuki, Kenji Yoshitani, Atsuhiro Sakamoto, Hiroyasu Bito
Journal of clinical monitoring and computing 35(5) 1063-1068 2020年7月31日 査読有り
The Sensmart Model X-100 (Nonin Medical Inc, Plymouth, MN, USA) is a relatively new device that possesses two sets of emitters and detectors and uses near infrared spectroscopy (NIRS) to measure regional cerebral oxygen saturation (rSO2). The value of rSO2 obtained by other NIRS devices is affected by physiological and anatomical variables such as hemoglobin concentration, area of cerebrospinal fluid (CSF) layer and skull thickness. The effects of these variables have not yet been determined in measurement of rSO2 by Sensmart Model X-100. We examined the effects of area of CSF, hemoglobin concentration, and skull thickness on the values of rSO2 measured by Sensmart Model X-100 and tissue oxygen index (TOI) measured by NIRO-200NX (Hamamatsu Photonix, Hamamatsu, Japan). Forty neurosurgical, cardiac and vascular surgical patients who underwent preoperative computed tomographic (CT) scan of the brain were enrolled in this study. Regional cerebral oxygen saturation (rSO2) at the forehead was measured sequentially by NIRO-200NX and by Sensmart Model X-100. Simultaneously, mean arterial pressure, hemoglobin concentration, and partial pressure of carbon dioxide in arterial blood (PaCO2) were measured. To evaluate the effects of anatomical factors on rSO2, we measured skull thickness and area of CSF layer using CT images of the brain. Multiple regression analysis was used to examine the relationships between the rSO2 values and anatomical and physiological factors. The area of the CSF layer and hemoglobin concentration had significant associations with rSO2 measured by the Sensmart Model X-100, whereas none of the studied variables was significantly associated with TOI. The measurement of rSO2 by Sensmart Model X-100 is not affected by the skull thickness of patients. Area of the CSF layer and hemoglobin concentration may be the main biases in measurement of rSO2 by Sensmart Model X-100.