医学部

鈴木 匡弘

スズキ マサヒロ  (Masahiro Suzuki)

基本情報

所属
藤田医科大学 医学部 医学科 准教授
学位
博士(農学)(名古屋大学)

J-GLOBAL ID
200901000682489578
researchmap会員ID
0000201773

研究キーワード

 1

経歴

 2

論文

 69
  • Miyu Isogai, Kumiko Kawamura, Tetsuya Yagi, Shizuo Kayama, Motoyuki Sugai, Yohei Doi, Masahiro Suzuki
    Microbial genomics 10(9) 2024年9月  
    Klebsiella pneumoniae is a Gram-negative bacterium that causes both community- and healthcare-associated infections. Although various virulence factors and highly pathogenic phenotypes have been reported, the pathogenicity of K. pneumoniae is still not fully understood. In this study, we utilized whole-genome sequencing data of 168 clinical K. pneumoniae strains to assess pathogenicity. This work was based on the concept that the genetic composition of individual genomes (referred to as holistic gene content) of the strains may contribute to their pathogenicity. Holistic gene content analysis revealed two distinct groups of K. pneumoniae strains ('major group' and 'minor group'). The minor group included strains with known highly pathogenic clones (ST23, ST375, ST65 and ST86). The minor group had higher rates of capsular genotype K1 and presence of nine specific virulence genes (rmpA, iucA, iutA, irp2, fyuA, ybtS, iroN, allS and clbA) compared to the major group. Pathogenicity was assessed using Galleria mellonella larvae. Infection experiments revealed lower survival rates of larvae infected with strains from the minor group, indicating higher virulence. In addition, the minor group had a higher string test positivity rate than the major group. Holistic gene content analysis predicted possession of virulence genes, string test positivity and pathogenicity as observed in the G. mellonella infection model. Moreover, the findings suggested the presence of as yet unrecognized genomic elements that are either involved in the acquisition of virulence genes or associated with pathogenicity.
  • Ryota Hase, Aki Sakurai, Masahiro Suzuki, Naoya Itoh, Kayoko Hayakawa, Kohei Uemura, Yasufumi Matsumura, Hideaki Kato, Takuma Ishihara, David van Duin, Norio Ohmagari, Yohei Doi, Sho Saito
    The Journal of antimicrobial chemotherapy 2024年6月6日  
    BACKGROUND: Stenotrophomonas maltophilia is a carbapenem-resistant Gram-negative pathogen increasingly responsible for difficult-to-treat nosocomial infections. OBJECTIVES: To describe the contemporary clinical characteristics and genome epidemiology of patients colonized or infected by S. maltophilia in a multicentre, prospective cohort. METHODS: All patients with a clinical culture growing S. maltophilia were enrolled at six tertiary hospitals across Japan between April 2019 and March 2022. The clinical characteristics, outcomes, antimicrobial susceptibility and genomic epidemiology of cases with S. maltophilia were investigated. RESULTS: In total, 78 patients were included representing 34 infection and 44 colonization cases. The median age was 72.5 years (IQR, 61-78), and males accounted for 53 cases (68%). The most common comorbidity was localized solid malignancy (39%). Nearly half of the patients (44%) were immunosuppressed, with antineoplastic chemotherapy accounting for 31%. The respiratory tract was the most common site of colonization (86%), whereas bacteraemia accounted for most infection cases (56%). The 30 day all-cause mortality rate was 21%, which was significantly higher in infection cases than colonization cases (35% versus 9%; adjusted HR, 3.81; 95% CI, 1.22-11.96). Susceptibility rates to ceftazidime, levofloxacin, minocycline and sulfamethoxazole/trimethoprim were 14%, 65%, 87% and 100%, respectively. The percentage of infection ranged from 13% in the unclassified group to 86% in genomic group 6A. The percentage of non-susceptibility to ceftazidime ranged from 33% in genomic group C to 100% in genomic groups 6 and 7 and genomic group geniculate. CONCLUSIONS: In this contemporary multicentre cohort, S. maltophilia primarily colonized the respiratory tract, whereas patients with bacteraemia had the highest the mortality from this pathogen. Sulfamethoxazole/trimethoprim remained consistently active, but susceptibility to levofloxacin was relatively low. The proportions of cases representing infection and susceptibility to ceftazidime differed significantly based on genomic groups.
  • Daisuke Suzuki, Aki Sakurai, Mitsutaka Wakuda, Masahiro Suzuki, Yohei Doi
    Antimicrobial agents and chemotherapy 68(5) e0167223 2024年5月2日  
    Carbapenemase-producing Enterobacterales (CPEs) are one of the top priority antimicrobial-resistant pathogens. Among CPEs, those producing acquired metallo-β-lactamases (MBLs) are considered particularly problematic as few agents are active against them. Imipenemase (IMP) is the most frequently encountered acquired MBL in Japan, but comprehensive assessment of clinical and microbiological features of IMP-producing Enterobacterales infection remains scarce. Here, we retrospectively evaluated 62 patients who were hospitalized at a university hospital in Japan and had IMP-producing Enterobacterales from a clinical culture. The isolates were either Enterobacter cloacae complex or Klebsiella pneumoniae, and most of them were isolated from sputum. The majority of K. pneumoniae, but not E. cloacae complex isolates, were susceptible to aztreonam. Sequence type (ST) 78 and ST517 were prevalent for E. cloacae complex and K. pneumoniae, respectively, and all isolates carried blaIMP-1. Twenty-four of the patients were deemed infected with IMP-producing Enterobacterales. Among the infected patients, therapy varied and largely consisted of conventional β-lactam agents, fluoroquinolones, or combinations. Three (13%), five (21%), and nine (38%) of them died by days 14, 30, and 90, respectively. While incremental mortality over 90 days was observed in association with underlying comorbidities, active conventional treatment options were available for most patients with IMP-producing Enterobacterales infections, distinguishing them from more multidrug-resistant CPE infections associated with globally common MBLs, such as New Delhi metallo-β-lactamase (NDM) and Verona integron-encoded metallo-β-lactamase (VIM).
  • Brian Hayama, Sohei Harada, Masahiro Suzuki, Yohei Doi, Yusuke Nomura, Kotaro Aoki, Kazumi Takehana, Tomomi Akatsuchi, Taisuke Enokida, Koichi Takeda, Akira Seto, Hiroki Mitani, Daisuke Ohkushi
    Microbiology spectrum 12(5) e0426023 2024年4月8日  
    UNLABELLED: Streptococcus pyogenes causes a variety of human infections, and hospital outbreaks with this pathogen have also been reported. The purpose of this study is to describe the clinical characteristics of an outbreak of S. pyogenes involving 15 patients and four healthcare workers (HCWs), as well as the molecular characteristics of the causative isolates. The course and response to the outbreak were reviewed, and information on the characteristics of the patients was extracted retrospectively from the medical records. Whole-genome sequencing of the 16 causative isolates (14 from patients and two from HCWs) was also performed. All 15 patients were postoperative of head and neck cancer with tracheotomy, and 12 had invasive infections, primarily surgical site infections, all of which resolved without causing serious illness. All but the first case was detected more than 7 days after admission. S. pyogenes was detected in two patients after empiric antimicrobial administration was performed on all inpatients and HCWs, and the outbreak was finally contained in approximately 2 months. All isolates detected in patients and HCWs belonged to emm89/clade 3, a hypervirulent clone that has emerged worldwide and was classified as sequence type 646. These isolates had single nucleotide polymorphism (SNP) differences of zero to one, indicating clonal transmission. This study demonstrated an outbreak of S. pyogenes emm89/clade 3 in a ward of patients with head and neck cancer. The global emergence of hypervirulent isolates may increase the risk of outbreaks among high-risk patients. IMPORTANCE: This study describes an outbreak of Streptococcus pyogenes that occurred in a ward caring for patients with head and neck cancer and tracheostomies. Many cases of invasive infections occurred in a short period, and extensive empiric antimicrobial administration on patients and healthcare workers was performed to control the outbreak. Whole-genome sequencing analysis of the causative strains confirmed that it was a monoclonal transmission of strains belonging to emm89/clade 3. The epidemiology and clinical characteristics of S. pyogenes infections have changed with the replacement of the prevalent clones worldwide. In the 1980s, there was a reemergence of S. pyogenes infections in high-income countries due to the spread of hypervirulent emm1 strains. emm89/clade 3 has recently been spreading worldwide and shares common features with emm1, including increased production of two toxins, NADase, and streptolysin O. The outbreak reported here may reflect the high spreading potential and virulence of emm89/clade 3.
  • Jayathilake Sarangi, Ayaka Ido, Masaya Ito, Chihiro Iinuma, Yo Doyama, Wanchun Jin, Jun-ichi Wachino, Masahiro Suzuki, Mitsutaka Iguchi, Tetsuya Yagi, Yoshichika Arakawa, Kouji Kimura
    Antimicrobial Agents and Chemotherapy 68(4) 2024年4月3日  
    ABSTRACT Streptococcus mitis/oralis group isolates with reduced carbapenem susceptibility have been reported, but its isolation rate in Japan is unknown. We collected 356 clinical α-hemolytic streptococcal isolates and identified 142 of them as S. mitis/oralis using partial sodA sequencing. The rate of meropenem non-susceptibility was 17.6% (25/142). All 25 carbapenem-non-susceptible isolates harbored amino acid substitutions in/near the conserved motifs in PBP1A, PBP2B, and PBP2X. Carbapenem non-susceptibility is common among S. mitis/oralis group isolates in Japan.

MISC

 65

Works(作品等)

 1
  • Masahiro Suzuki
    2023年1月 - 現在 ソフトウェア
    GIGAdoc offers a graphical user interface (GUI) for bioinformatics software, facilitating microbial genome analysis on Docker. It's developed for use on Linux but is also compatible with Windows through WSL2. GIGAdoc simplifies the process of using advanced genomic analysis tools by providing a user-friendly interface. The latest version introduces several enhancements, including default settings for folders, support for fastANI and cgMLST, alongside other minor corrections, improving overall usability and functionality. The update on 28th February 2024 focuses on bug fixes, further stabilizing the application and enhancing user experience. Currently Supported Software

共同研究・競争的資金等の研究課題

 4