Institute for Comprehensive Medical Science

Akila Mayeda

  (前田 明)

Profile Information

Affiliation
Professor, Center for Medical Science, Fujita Health University
Degree
Ph.D. (Doctor of Medical Science)

Researcher number
50212204
J-GLOBAL ID
201101037230271477
researchmap Member ID
B000004071

External link

Believe or not, mRNAs encode all the designs of our bodies and all the plans of our living activity! However, nascent pre-mRNAs transcribed from human genes are terribly disrupted by intervening sequences, termed introns. The process to removed introns, termed pre-mRNA splicing, is therefore highly discriminatory and faithful. And thus, misregulation in this process causes disorders in cell functions, often with severe clinical consequences. We are studying to elucidate precise regulation system of splicing and challenges to understand the mechanism of aberrant splicing occurred in various serious diseases.

Papers

 80
  • K. Fukumura, J.P. Venables, A. Mayeda
    Mol. Cell. Oncol., ,in press., Dec, 2021  Peer-reviewed
  • Daisuke Hoshino, Hisamori Katoh, Kazuhiro Fukumura, Akila Mayeda, Yohei Miyagi, Motoharu Seiki, Naohiko Koshikawa
    Cancer Science, 112 4957-4967, Dec, 2021  Peer-reviewed
  • Kazuhiro Fukumura, Rei Yoshimoto, Luca Sperotto, Hyun-Seo Kang, Tetsuro Hirose, Kunio Inoue, Michael Sattler, Akila Mayeda
    Nature communications, 12(1) 4910-4910, Aug 13, 2021  Peer-reviewed
    Human pre-mRNA introns vary in size from under fifty to over a million nucleotides. We searched for essential factors involved in the splicing of human short introns by screening siRNAs against 154 human nuclear proteins. The splicing activity was assayed with a model HNRNPH1 pre-mRNA containing short 56-nucleotide intron. We identify a known alternative splicing regulator SPF45 (RBM17) as a constitutive splicing factor that is required to splice out this 56-nt intron. Whole-transcriptome sequencing of SPF45-deficient cells reveals that SPF45 is essential in the efficient splicing of many short introns. To initiate the spliceosome assembly on a short intron with the truncated poly-pyrimidine tract, the U2AF-homology motif (UHM) of SPF45 competes out that of U2AF65 (U2AF2) for binding to the UHM-ligand motif (ULM) of the U2 snRNP protein SF3b155 (SF3B1). We propose that splicing in a distinct subset of human short introns depends on SPF45 but not U2AF heterodimer.
  • Yuta Otani, Ken-Ichi Fujita, Toshiki Kameyama, Akila Mayeda
    International journal of molecular sciences, 22(12), Jun 17, 2021  Peer-reviewed
    Using TSG101 pre-mRNA, we previously discovered cancer-specific re-splicing of mature mRNA that generates aberrant transcripts/proteins. The fact that mRNA is aberrantly re-spliced in various cancer cells implies there must be an important mechanism to prevent deleterious re-splicing on the spliced mRNA in normal cells. We thus postulated that mRNA re-splicing is controlled by specific repressors, and we searched for repressor candidates by siRNA-based screening for mRNA re-splicing activity. We found that knock-down of EIF4A3, which is a core component of the exon junction complex (EJC), significantly promoted mRNA re-splicing. Remarkably, we could recapitulate cancer-specific mRNA re-splicing in normal cells by knock-down of any of the core EJC proteins, EIF4A3, MAGOH, or RBM8A (Y14), implicating the EJC core as the repressor of mRNA re-splicing often observed in cancer cells. We propose that the EJC core is a critical mRNA quality control factor to prevent over-splicing of mature mRNA.
  • Rei Yoshimoto, Jagat K Chhipi-Shrestha, Tilman Schneider-Poetsch, Masaaki Furuno, A Maxwell Burroughs, Shohei Noma, Harukazu Suzuki, Yoshihide Hayashizaki, Akila Mayeda, Shinichi Nakagawa, Daisuke Kaida, Shintaro Iwasaki, Minoru Yoshida
    Cell chemical biology, Mar 23, 2021  Peer-reviewed
    RNA splicing, a highly conserved process in eukaryotic gene expression, is seen as a promising target for anticancer agents. Splicing is associated with other RNA processing steps, such as transcription and nuclear export; however, our understanding of the interaction between splicing and other RNA regulatory mechanisms remains incomplete. Moreover, the impact of chemical splicing inhibition on long non-coding RNAs (lncRNAs) has been poorly understood. Here, we demonstrate that spliceostatin A (SSA), a chemical splicing modulator that binds to the SF3B subcomplex of the U2 small nuclear ribonucleoprotein particle (snRNP), limits U1 snRNP availability in splicing, resulting in premature cleavage and polyadenylation of MALAT1, a nuclear lncRNA, as well as protein-coding mRNAs. Therefore, truncated transcripts are exported into the cytoplasm and translated, resulting in aberrant protein products. Our work demonstrates that active recycling of the splicing machinery maintains homeostasis of RNA processing beyond intron excision.

Misc.

 15

Books and Other Publications

 4

Presentations

 191

Teaching Experience

 14

Research Projects

 23

Other

 2
  • ① がん由来細胞を用いた、mRNA再スプライシングを含む異常スプライシングの分子機構の解析、 ② ヒトの新規スプライシング因子として再発見されたSPF45の、抗がん多剤耐性への関与機構の解析、 *本研究シーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進セン ター(fuji-san@fujita-hu.ac.jp)まで
  • mRNA前駆体のスプライシングはイントロンを取り除いて蛋白質の設計図であるmRNAを作るが故に、遺伝子発現における必須の過程である。スプライシングは正確無比に制御され、ひとたび異常が起きると、しばしば重篤な疾患を引き起こす。プロテオームに多様性をもたらす選択的スプライシングが、様々な生命現象において重要な役割を果たしている事実は明らかである。講義では、ヒト遺伝子発現を制御するネットワークについて理解する。最近の画期的なアンチセンス核酸医薬の開発は記憶に新しい。疾患治療につながる低分子化合物によるスプライシング操作機構についても、学んでいきたい。アメリカでの17年にわたる研究所/大学教育現場での貴重な体験を、本学の教育の現場で生かし、国際的に活躍出来る研究者の育成を目標としたい。