研究者業績

石川 充

イシカワ ミツル  (Ishikawa Mitsuru)

基本情報

所属
藤田医科大学 精神・神経病態解明センター  神経再生・創薬研究部門 講師 (博士(薬学))
慶應義塾大学 医学部 生理学教室 訪問講師
学位
薬学(富山大学)

J-GLOBAL ID
201301043207447783
researchmap会員ID
B000233575

ヒトの神経細胞を「作る・育てる・見る・操作する」ことで、さまざまな遺伝性神経難病や神経系common diseaseの病態解析と創薬を行っています。特に以下の研究開発、および技術指導・提供を行っています。

1) 疾患特異的iPS細胞技術を用いた神経難病研究
  1)-1 精神疾患研究
  1)-2 小児神経疾患・てんかん脳症研究
  1)-3 認知症研究
  1)-4 ALS研究

2) 安定で確実なiPS細胞樹立と品質管理法 / 技術指導

3) スクリーニング向けヒト神経細胞の調製技術
  3)-1 超均一「興奮性」神経細胞の迅速作出法 / 技術指導
  3)-2 超均一「抑制性」神経細胞の迅速作出法 / 技術指導
  3)-3 迅速脳オルガノイド培養法開発

4) iPS細胞を介さない直接的な神経系誘導技術開発

5) scRNA-SEQ/scATAC-SEQ

6) ヒト神経細胞を用いた「光操作と光計測」 開発

7) 遺伝子エンハンサー同定技術応用(CAGE-SEQ)

8) ヒトiPS細胞へのゲノム編集技術開発と技術指導

9) 霊長類進化とゲノム、脳機能の研究

10) 核酸医薬


論文

 51
  • Nicolas Leventoux, Satoru Morimoto, Mitsuru Ishikawa, Shiho Nakamura, Fumiko Ozawa, Reona Kobayashi, Hirotaka Watanabe, Sopak Supakul, Satoshi Okamoto, Zhi Zhou, Hiroya Kobayashi, Chris Kato, Yoshifumi Hirokawa, Ikuko Aiba, Shinichi Takahashi, Shinsuke Shibata, Masaki Takao, Mari Yoshida, Fumito Endo, Koji Yamanaka, Yasumasa Kokubo, Hideyuki Okano
    Acta neuropathologica 147(1) 84-84 2024年5月15日  
    Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.
  • Ryohei Takada, Michihiro Toritsuka, Takahira Yamauchi, Rio Ishida, Yoshinori Kayashima, Yuki Nishi, Mitsuru Ishikawa, Kazuhiko Yamamuro, Minobu Ikehara, Takashi Komori, Yuki Noriyama, Kohei Kamikawa, Yasuhiko Saito, Hideyuki Okano, Manabu Makinodan
    Molecular autism 15(1) 10-10 2024年2月21日  
    BACKGROUND: A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed. METHODS: To elucidate the effect of macrophages on human neurons, we used a co-culture system of control human-induced pluripotent stem cell-derived neurons and differentiated macrophages obtained from the peripheral blood mononuclear cells of five TD individuals and five individuals with ASD. All participants were male and ethnically Japanese. RESULTS: Our results of co-culture experiments showed that GM-CSF MΦ affect the dendritic outgrowth of neurons through the secretion of pro-inflammatory cytokines, interleukin-1α and TNF-α. Macrophages derived from individuals with ASD exerted more severe effects than those derived from TD individuals. LIMITATIONS: The main limitations of our study were the small sample size with a gender bias toward males, the use of artificially polarized macrophages, and the inability to directly observe the interaction between neurons and macrophages from the same individuals. CONCLUSIONS: Our co-culture system revealed the non-cell autonomous adverse effects of GM-CSF MΦ in individuals with ASD on neurons, mediated by interleukin-1α and TNF-α. These results may support the immune dysfunction hypothesis of ASD, providing new insights into its pathology.
  • Hiroya Kobayashi, Koji Ueda, Satoru Morimoto, Mitsuru Ishikawa, Nicolas Leventoux, Ryogen Sasaki, Yoshifumi Hirokawa, Yasumasa Kokubo, Hideyuki Okano
    Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 44(12) 4511-4516 2023年12月  
    BACKGROUND: Amyotrophic lateral sclerosis/Parkinsonism-dementia complex in Kii peninsula, Japan (Kii ALS/PDC), is an endemic neurodegenerative disease whose causes and pathogenesis remain unknown. However, astrocytes in autopsied cases of Kii ALS/PDC show characteristic lesions. In addition, relationships between extracellular vesicles (EVs) and neurodegenerative diseases are increasingly apparent. Therefore, we focused on proteins in EVs derived from Kii ALS/PDC astrocytes in the present study. METHODS: Induced pluripotent stem cells (iPSCs) derived from three healthy controls (HCs) and three patients with Kii ALS/PDC were differentiated into astrocytes. EVs in the culture medium of astrocytes were collected and subjected to quantitative proteome analysis. RESULTS: Our proteome analysis reveals that EV-containing proteins derived from astrocytes of patients with Kii ALS/PDC show distinctive patterns compared with those of HCs. Moreover, EVs derived from Kii ALS/PDC astrocytes display increased proteins related to proteostasis and decreased proteins related to anti-inflammation. DISCUSSION: Proteins contained in EVs from astrocytes unveil protective support to neurons and may reflect the molecular pathomechanism of Kii ALS/PDC; accordingly, they may be potential biomarker candidates of Kii ALS/PDC.
  • 喜山 公輔, 渡部 博貴, 石川 充, 小林 菜々子, 篠崎 宗久, 嶋田 弘子, 岡野 栄之
    Dementia Japan 37(4) 678-678 2023年10月  
  • Tosho Kondo, Ihori Ebinuma, Hirotaka Tanaka, Yukitoshi Nishikawa, Takaki Komiya, Mitsuru Ishikawa, Hideyuki Okano
    International journal of molecular sciences 24(8) 2023年4月10日  
    Amyotrophic lateral sclerosis (ALS) is a major life-threatening disease caused by motor neuron degeneration. More effective treatments through drug discovery are urgently needed. Here, we established an effective high-throughput screening system using induced pluripotent stem cells (iPSCs). Using a Tet-On-dependent transcription factor expression system carried on the PiggyBac vector, motor neurons were efficiently and rapidly generated from iPSCs by a single-step induction method. Induced iPSC transcripts displayed characteristics similar to those of spinal cord neurons. iPSC-generated motor neurons carried a mutation in fused in sarcoma (FUS) and superoxide dismutase 1 (SOD1) genes and had abnormal protein accumulation corresponding to each mutation. Calcium imaging and multiple electrode array (MEA) recordings demonstrated that ALS neurons were abnormally hyperexcitable. Noticeably, protein accumulation and hyperexcitability were ameliorated by treatment with rapamycin (mTOR inhibitor) and retigabine (Kv7 channel activator), respectively. Furthermore, rapamycin suppressed ALS neuronal death and hyperexcitability, suggesting that protein aggregate clearance through the activation of autophagy effectively normalized activity and improved neuronal survival. Our culture system reproduced several ALS phenotypes, including protein accumulation, hyperexcitability, and neuronal death. This rapid and robust phenotypic screening system will likely facilitate the discovery of novel ALS therapeutics and stratified and personalized medicine for sporadic motor neuron diseases.
  • Emi Qian, Masahiro Uemura, Hiroya Kobayashi, Shiho Nakamura, Fumiko Ozawa, Sho Yoshimatsu, Mitsuru Ishikawa, Osamu Onodera, Satoru Morimoto, Hideyuki Okano
    Inflammation and regeneration 43(1) 23-23 2023年4月3日  
    Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is an inherited cerebral small vessel disease (CSVD) caused by biallelic mutations in the high-temperature requirement serine peptidase A1 (HTRA1) gene. Even heterozygous mutations in HTRA1 are recently revealed to cause cardinal clinical features of CSVD. Here, we report the first establishment of a human induced pluripotent stem cell (hiPSC) line from a patient with heterozygous HTRA1-related CSVD. Peripheral blood mononuclear cells (PBMCs) were reprogrammed by the transfection of episomal vectors encoding human OCT3/4 (POU5F1), SOX2, KLF4, L-MYC, LIN28, and a murine dominant-negative mutant of p53 (mp53DD). The established iPSCs had normal morphology as human pluripotent stem cells and normal karyotype (46XX). Moreover, we found that the HTRA1 missense mutation (c.905G>A, p.R302Q) was heterozygous. These iPSCs expressed pluripotency-related markers and had the potential to differentiate into all three germ layers in vitro. HTRA1 and the supposed disease-associated gene NOG were differentially expressed in the patient iPSCs at mRNA levels compared to those of control lines. The iPSC line would facilitate in vitro research for understanding the cellular pathomechanisms caused by the HTRA1 mutation including its dominant-negative effect.
  • Chikara Takeuchi, Kensaku Murano, Mitsuru Ishikawa, Hideyuki Okano, Yuka W. Iwasaki
    Methods in Molecular Biology 2509 143-153 2022年7月  査読有り
  • Tsubasa Saeki, Sho Yoshimatsu, Mitsuru Ishikawa, Chung-Chau Hon, Ikuko Koya, Shinsuke Shibata, Makoto Hosoya, Chika Saegusa, Kaoru Ogawa, Jay W Shin, Masato Fujioka, Hideyuki Okano
    Regenerative therapy 20 165-186 2022年6月  
    Introduction: Efficient induction of the otic placode, the developmental origin of the inner ear from human pluripotent stem cells (hPSCs), provides a robust platform for otic development and sensorineural hearing loss modelling. Nevertheless, there remains a limited capacity of otic lineage specification from hPSCs by stepwise differentiation methods, since the critical factors for successful otic cell differentiation have not been thoroughly investigated. In this study, we developed a novel differentiation system involving the use of a three-dimensional (3D) floating culture with signalling factors for generating otic cell lineages via stepwise differentiation of hPSCs. Methods: We differentiated hPSCs into preplacodal cells under a two-dimensional (2D) monolayer culture. Then, we transferred the induced preplacodal cells into a 3D floating culture under the control of the fibroblast growth factor (FGF), bone morphogenetic protein (BMP), retinoic acid (RA) and WNT signalling pathways. We evaluated the characteristics of the induced cells using immunocytochemistry, quantitative PCR (qPCR), population averaging, and single-cell RNA-seq (RNA-seq) analysis. We further investigated the methods for differentiating otic progenitors towards hair cells by overexpression of defined transcription factors. Results: We demonstrated that hPSC-derived preplacodal cells acquired the potential to differentiate into posterior placodal cells in 3D floating culture with FGF2 and RA. Subsequent activation of WNT signalling induced otic placodal cell formation. By single-cell RNA-seq (scRNA-seq) analysis, we identified multiple clusters of otic placode- and otocyst marker-positive cells in the induced spheres. Moreover, the induced otic cells showed the potential to generate hair cell-like cells by overexpression of the transcription factors ATOH1, POU4F3 and GFI1. Conclusions: We demonstrated the critical role of FGF2, RA and WNT signalling in a 3D environment for the in vitro differentiation of otic lineage cells from hPSCs. The induced otic cells had the capacity to differentiate into inner ear hair cells with stereociliary bundles and tip link-like structures. The protocol will be useful for in vitro disease modelling of sensorineural hearing loss and human inner ear development and thus contribute to drug screening and stem cell-based regenerative medicine.
  • 河合 桃太郎, 名越 慈人, 今泉 研人, 石川 充, 芝田 晋介, 篠崎 宗久, 岡野 栄之, 中村 雅也
    Journal of Spine Research 13(3) 475-475 2022年3月  
  • Momotaro Kawai, Kent Imaizumi, Mitsuru Ishikawa, Shinsuke Shibata, Munehisa Shinozaki, Takahiro Shibata, Shogo Hashimoto, Takahiro Kitagawa, Kentaro Ago, Keita Kajikawa, Reo Shibata, Yasuhiro Kamata, Junichi Ushiba, Keisuke Koga, Hidemasa Furue, Morio Matsumoto, Masaya Nakamura, Narihito Nagoshi, Hideyuki Okano
    Cell Reports 37(8) 110019-110019 2021年11月  査読有り
    In cell transplantation therapy for spinal cord injury (SCI), grafted human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) mainly differentiate into neurons, forming synapses in a process similar to neurodevelopment. In the developing nervous system, the activity of immature neurons has an important role in constructing and maintaining new synapses. Thus, we investigate how enhancing the activity of transplanted hiPSC-NS/PCs affects both the transplanted cells themselves and the host tissue. We find that chemogenetic stimulation of hiPSC-derived neural cells enhances cell activity and neuron-to-neuron interactions in vitro. In a rodent model of SCI, consecutive and selective chemogenetic stimulation of transplanted hiPSC-NS/PCs also enhances the expression of synapse-related genes and proteins in surrounding host tissues and prevents atrophy of the injured spinal cord, thereby improving locomotor function. These findings provide a strategy for enhancing activity within the graft to improve the efficacy of cell transplantation therapy for SCI.
  • Zhi Zhou, Sho Yoshimatsu, Emi Qian, Mitsuru Ishikawa, Tsukika Sato, Manami Ohtaka, Mahito Nakanishi, Hideyuki Okano
    Stem cell research 56 102549-102549 2021年9月23日  
    The defective and persistent Sendai virus (SeVdp) vector system allows efficient generation of transgene-free induced pluripotent stem cells (iPSCs) from human somatic cells. By leveraging the system, here we report the generation of an iPSC line from somatic fibroblasts of a healthy control donner (female), named KEIOi002-A (also named YG-iPS). The control iPSC line would be a useful resource for stem cell research and regenerative medicine.
  • Masahiro Nogami, Mitsuru Ishikawa, Atsushi Doi, Osamu Sano, Takefumi Sone, Tetsuya Akiyama, Masashi Aoki, Atsushi Nakanishi, Kazuhiro Ogi, Masato Yano, Hideyuki Okano
    Neurobiology of disease 155 105364-105364 2021年7月  
    Fused in sarcoma/translated in liposarcoma (FUS) is a causative gene of amyotrophic lateral sclerosis (ALS). Mutated FUS causes accumulation of DNA damage and cytosolic stress granule (SG) formation, thereby motor neuron (MN) death. However, key molecular aetiology remains unclear. Here, we applied a novel platform technology, iBRN, "Non- biased" Bayesian gene regulatory network analysis based on induced pluripotent stem cell (iPSC)-derived cell model, to elucidate the molecular aetiology using transcriptome of iPSC-derived MNs harboring FUSH517D. iBRN revealed "hub molecules", which strongly influenced transcriptome network, such as miR-125b-5p-TIMELESS axis and PRKDC for the molecular aetiology. Next, we confirmed miR-125b-5p-TIMELESS axis in FUSH517D MNs such that miR-125b-5p regulated several DNA repair-related genes including TIMELESS. In addition, we validated both introduction of miR-125b-5p and knocking down of TIMELESS caused DNA damage in the cell culture model. Furthermore, PRKDC was strongly associated with FUS mis-localization into SGs by DNA damage under impaired DNA-PK activity. Collectively, our iBRN strategy provides the first compelling evidence to elucidate molecular aetiology in neurodegenerative diseases.
  • Eisuke Ichise, Tomohiro Chiyonobu, Mitsuru Ishikawa, Yasuyoshi Tanaka, Mami Shibata, Takenori Tozawa, Yoshihiro Taura, Satoshi Yamashita, Michiko Yoshida, Masafumi Morimoto, Norimichi Higurashi, Toshiyuki Yamamoto, Hideyuki Okano, Shinichi Hirose
    Human molecular genetics 30(14) 1337-1348 2021年6月26日  
    Syntaxin-binding protein 1 (STXBP1; also called MUNC18-1), encoded by STXBP1, is an essential component of the molecular machinery that controls synaptic vesicle docking and fusion. De novo pathogenic variants of STXBP1 cause a complex set of neurological disturbances, namely STXBP1 encephalopathy (STXBP1-E) that includes epilepsy, neurodevelopmental disorders and neurodegeneration. Several animal studies have suggested the contribution of GABAergic dysfunction in STXBP1-E pathogenesis. However, the pathophysiological changes in GABAergic neurons of these patients are still poorly understood. Here, we exclusively generated GABAergic neurons from STXBP1-E patient-derived induced pluripotent stem cells (iPSCs) by transient expression of the transcription factors ASCL1 and DLX2. We also generated CRISPR/Cas9-edited isogenic iPSC-derived GABAergic (iPSC GABA) neurons as controls. We demonstrated that the reduction in STXBP1 protein levels in patient-derived iPSC GABA neurons was slight (approximately 20%) compared to the control neurons, despite a 50% reduction in STXBP1 mRNA levels. Using a microelectrode array-based assay, we found that patient-derived iPSC GABA neurons exhibited dysfunctional maturation with reduced numbers of spontaneous spikes and bursts. These findings reinforce the idea that GABAergic dysfunction is a crucial contributor to STXBP1-E pathogenesis. Moreover, gene expression analysis revealed specific dysregulation of genes previously implicated in epilepsy, neurodevelopment and neurodegeneration in patient-derived iPSC GABA neurons, namely KCNH1, KCNH5, CNN3, RASGRF1, SEMA3A, SIAH3 and INPP5F. Thus, our study provides new insights for understanding the biological processes underlying the widespread neuropathological features of STXBP1-E.
  • Shio Mitsuzawa, Naoki Suzuki, Tetsuya Akiyama, Mitsuru Ishikawa, Takefumi Sone, Jiro Kawada, Ryo Funayama, Matsuyuki Shirota, Hiroaki Mitsuhashi, Satoru Morimoto, Kensuke Ikeda, Tomomi Shijo, Akiyuki Ohno, Naoko Nakamura, Hiroya Ono, Risako Ono, Shion Osana, Tadashi Nakagawa, Ayumi Nishiyama, Rumiko Izumi, Shohei Kaneda, Yoshiho Ikeuchi, Keiko Nakayama, Teruo Fujii, Hitoshi Warita, Hideyuki Okano, Masashi Aoki
    Stem cell reports 16(6) 1527-1541 2021年6月8日  
    Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable motor neuron (MN) disease. The reasons for selective MN vulnerability in ALS are unknown. Axonal pathology is among the earliest signs of ALS. We searched for novel modulatory genes in human MN axon shortening affected by TARDBP mutations. In transcriptome analysis of RNA present in the axon compartment of human-derived induced pluripotent stem cell (iPSC)-derived MNs, PHOX2B (paired-like homeobox protein 2B) showed lower expression in TARDBP mutant axons, which was consistent with axon qPCR and in situ hybridization. PHOX2B mRNA stability was reduced in TARDBP mutant MNs. Furthermore, PHOX2B knockdown reduced neurite length in human MNs. Finally, phox2b knockdown in zebrafish induced short spinal axons and impaired escape response. PHOX2B is known to be highly express in other types of neurons maintained after ALS progression. Collectively, TARDBP mutations induced loss of axonal resilience, which is an important ALS-related phenotype mediated by PHOX2B downregulation.
  • Sho Yoshimatsu, Emi Qian, Tsukika Sato, Masafumi Yamamoto, Mitsuru Ishikawa, Hideyuki Okano
    Stem cell research 53 102380-102380 2021年5月  
    Epstein-Barr virus (EBV)-based episomal vector system enables persistent transgene expression, which is advantageous for efficient derivation of transgene-free induced pluripotent stem cells (iPSCs) without viral transduction. Here, we report establishment of an iPSC line from somatic fibroblasts of a neonatal common marmoset monkey (marmoset; Callithrix jacchus) using an all-in-one episomal vector that we newly developed. The established iPSC line, named NM-iPS, showed standard characteristics of pluripotency such as pluripotency-related marker expression, three germ layer differentiation, and normal karyotype (2n = 46). The novel iPSC line would be a useful resource for stem cell research using non-human primates.
  • Sho Yoshimatsu, Mayutaka Nakajima, Aozora Iguchi, Tsukasa Sanosaka, Tsukika Sato, Mari Nakamura, Ryusuke Nakajima, Eri Arai, Mitsuru Ishikawa, Kent Imaizumi, Hirotaka Watanabe, Junko Okahara, Toshiaki Noce, Yuta Takeda, Erika Sasaki, Rüdiger Behr, Kazuya Edamura, Seiji Shiozawa, Hideyuki Okano
    Stem cell reports 16(4) 754-770 2021年4月13日  
    Induced pluripotent stem cells (iPSCs) are capable of providing an unlimited source of cells from all three germ layers and germ cells. The derivation and usage of iPSCs from various animal models may facilitate stem cell-based therapy, gene-modified animal production, and evolutionary studies assessing interspecies differences. However, there is a lack of species-wide methods for deriving iPSCs, in particular by means of non-viral and non-transgene-integrating (NTI) approaches. Here, we demonstrate the iPSC derivation from somatic fibroblasts of multiple mammalian species from three different taxonomic orders, including the common marmoset (Callithrix jacchus) in Primates, the dog (Canis lupus familiaris) in Carnivora, and the pig (Sus scrofa) in Cetartiodactyla, by combinatorial usage of chemical compounds and NTI episomal vectors. Interestingly, the fibroblasts temporarily acquired a neural stem cell-like state during the reprogramming. Collectively, our method, robustly applicable to various species, holds a great potential for facilitating stem cell-based research using various animals in Mammalia.
  • Manami Deshimaru, Mariko Kinoshita-Kawada, Kaori Kubota, Takuya Watanabe, Yasuyoshi Tanaka, Saito Hirano, Fumiyoshi Ishidate, Masaki Hiramoto, Mitsuru Ishikawa, Yoshinari Uehara, Hideyuki Okano, Shinichi Hirose, Shinsuke Fujioka, Katsunori Iwasaki, Junichi Yuasa-Kawada, Takayasu Mishima, Yoshio Tsuboi
    International journal of molecular sciences 22(8) 2021年4月13日  
    A common pathological hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis, is cytoplasmic mislocalization and aggregation of nuclear RNA-binding protein TDP-43. Perry disease, which displays inherited atypical parkinsonism, is a type of TDP-43 proteinopathy. The causative gene DCTN1 encodes the largest subunit of the dynactin complex. Dynactin associates with the microtubule-based motor cytoplasmic dynein and is required for dynein-mediated long-distance retrograde transport. Perry disease-linked missense mutations (e.g., p.G71A) reside within the CAP-Gly domain and impair the microtubule-binding abilities of DCTN1. However, molecular mechanisms by which such DCTN1 mutations cause TDP-43 proteinopathy remain unclear. We found that DCTN1 bound to TDP-43. Biochemical analysis using a panel of truncated mutants revealed that the DCTN1 CAP-Gly-basic supradomain, dynactin domain, and C-terminal region interacted with TDP-43, preferentially through its C-terminal region. Remarkably, the p.G71A mutation affected the TDP-43-interacting ability of DCTN1. Overexpression of DCTN1G71A, the dynactin-domain fragment, or C-terminal fragment, but not the CAP-Gly-basic fragment, induced cytoplasmic mislocalization and aggregation of TDP-43, suggesting functional modularity among TDP-43-interacting domains of DCTN1. We thus identified DCTN1 as a new player in TDP-43 cytoplasmic-nuclear transport, and showed that dysregulation of DCTN1-TDP-43 interactions triggers mislocalization and aggregation of TDP-43, thus providing insights into the pathological mechanisms of Perry disease and other TDP-43 proteinopathies.
  • Tsukika Sato, Kent Imaizumi, Hirotaka Watanabe, Mitsuru Ishikawa, Hideyuki Okano
    Neuroscience letters 746 135676-135676 2021年2月16日  
    Human induced pluripotent stem cells (iPSCs) have great potential to elucidate the molecular pathogenesis of neurological/psychiatric diseases. In particular, neurological/psychiatric diseases often display brain region-specific symptoms, and the technology for generating region-specific neural cells from iPSCs has been established for detailed modeling of neurological/psychiatric disease phenotypes in vitro. On the other hand, recent advances in culturing human iPSCs without feeder cells have enabled highly efficient and reproducible neural induction. However, conventional regional control technologies have mainly been developed based on on-feeder iPSCs, and these methods are difficult to apply to feeder-free (ff) iPSC cultures. In this study, we established a novel culture system to generate region-specific neural cells from human ff-iPSCs. This system is the best optimized approach for feeder-free iPSC culture and generates specific neuronal subtypes with high purity and functionality, including forebrain cortical neurons, forebrain interneurons, midbrain dopaminergic neurons, and spinal motor neurons. In addition, the temporal patterning of cortical neuron layer specification in the forebrain was reproduced in our culture system, which enables the generation of layer-specific cortical neurons. Neuronal activity was demonstrated in the present culture system by using multiple electrode array and calcium imaging. Collectively, our ff-iPSC-based culture system would provide a desirable platform for modeling various types of neurological/psychiatric disease phenotypes.
  • Nicolas Leventoux, Satoru Morimoto, Kent Imaizumi, Yuta Sato, Shinichi Takahashi, Kyoko Mashima, Mitsuru Ishikawa, Iki Sonn, Takahiro Kondo, Hirotaka Watanabe, Hideyuki Okano
    Cells 9(12) 2020年12月13日  
    Induced pluripotent stem cell (iPSC)-based disease modeling has a great potential for uncovering the mechanisms of pathogenesis, especially in the case of neurodegenerative diseases where disease-susceptible cells can usually not be obtained from patients. So far, the iPSC-based modeling of neurodegenerative diseases has mainly focused on neurons because the protocols for generating astrocytes from iPSCs have not been fully established. The growing evidence of astrocytes' contribution to neurodegenerative diseases has underscored the lack of iPSC-derived astrocyte models. In the present study, we established a protocol to efficiently generate iPSC-derived astrocytes (iPasts), which were further characterized by RNA and protein expression profiles as well as functional assays. iPasts exhibited calcium dynamics and glutamate uptake activity comparable to human primary astrocytes. Moreover, when co-cultured with neurons, iPasts enhanced neuronal synaptic maturation. Our protocol can be used for modeling astrocyte-related disease phenotypes in vitro and further exploring the contribution of astrocytes to neurodegenerative diseases.
  • Etsuro Ohta, Takefumi Sone, Hideki Ukai, Tomoko Hisamatsu, Tokiko Kitagawa, Mitsuru Ishikawa, Makiko Nagai, Hiroki R Ueda, Fumiya Obata, Hideyuki Okano
    Stem cell research 49 102073-102073 2020年12月  
    Leucine-rich repeat kinase 2 (LRRK2) is the causal gene of the autosomal dominant hereditary form of Parkinson's disease (PD), PARK8. We have previously reported that induced pluripotent stem cells (iPSCs) from a PARK8 patient with I2020T LRRK2 mutation replicated to some extent the pathologic phenotype evident in the brain of PD patients. In the present study, we generated gene-corrected iPSCs line, KEIUi001-A, using TALEN-mediated genome editing. KEIUi001-A retained a normal karyotype and pluripotency, i.e. the capacity to differentiate into cell types of the three germ layers. This iPSCs will be valuable for clarifying various aspects of LRRK2-related pathology.
  • Shinichi Hirose, Yasuyoshi Tanaka, Mami Shibata, Yuichi Kimura, Mitsuru Ishikawa, Norimichi Higurashi, Toshiyuki Yamamoto, Eisuke Ichise, Tomohiro Chiyonobu, Atsushi Ishii
    Molecular and cellular neurosciences 108 103535-103535 2020年10月  
    Epilepsy is among the most common neurological disorders, affecting approximately 50 million people worldwide. Importantly, epilepsy is genetically and etiologically heterogenous, but several epilepsy types exhibit similar clinical presentations. Epilepsy-associated genes are being identified. However, the molecular pathomechanisms remain largely unknown. Approximately one-third of epilepsy is refractory to multiple conventional anti-epileptic drugs (AEDs). Induced pluripotent stem cells (iPSCs) provide an excellent tool to study the pathomechanisms underlying epilepsy and to develop novel treatments. Indeed, disease-specific iPSCs have been established for several genetic epilepsies. In particular, the molecular mechanisms underlying certain developmental and epileptic encephalopathies, such as Dravet syndrome, have been revealed. Modeling epilepsy with iPSCs enables new drug development based on the elucidated pathomechanisms. This can also be used to evaluate conventional AEDs and drug repurposing. Furthermore, transplanting neuronal cells derived from iPSCs into the brain has great potential to treat refractory epilepsies. Recent advances in iPSC technology have enabled the generation of neuronal organoids, or "mini brains." These organoids demonstrate electrophysiological activities similar to those of the brain and have the potential for extensive epilepsy research opportunities. Thus, the application of iPSCs in epilepsy provides insight into novel treatments based on the molecular pathomechanisms of epilepsy. In this review, we comprehensively discuss the studies conducted on iPSCs established for genetic epilepsy or epilepsies without major structural dysmorphic features.
  • Miho Mizukoshi, Ayaka Nozawa, Serina Oomizo, Daisuke Ihara, Jun Shiota, Keietsu Kikuchi, Maki Kaito, Yuta Ishibashi, Mitsuru Ishikawa, Mamoru Fukuchi, Masaaki Tsuda, Ichiro Takasaki, Akiko Tabuchi
    Biochemical and Biophysical Research Communications 529(3) 615-621 2020年8月  査読有り
    Suppressor of cancer cell invasion (SCAI) is a suppressor of myocardin-related transcription factor (MRTF)-mediated transcription and cancer cell invasion. However, roles of SCAI in the brain and neuronal cells are not fully resolved. In this study, we initially investigated the distribution of Scai mRNA in the developing rat brain and in neurons. We found that, although Scai mRNA levels decreased during brain development, it was highly expressed in several brain regions and in neurons but not astrocytes. Subsequently, in addition to Scai variant 1, we identified novel rat Scai variants 2 and 3 and characterized their functions in Neuro-2a cells. The novel Scai variants 2 and 3 contain unique exons that possess stop codons and therefore encode shorter proteins compared with the full-length Scai variant 1. SCAI variants 2 and 3 possess a nuclear localization signal, but do not have an MRTF-binding site. Immunostaining of green fluorescent protein (GFP)-tagged SCAI variants revealed a nuclear localization of variant 1, whereas localization of variants 2 and 3 was throughout the cytoplasm and nucleus, suggesting that other nuclear localization signals, which act in Neuro-2a cells, exist in SCAI. All three SCAI variants suppressed the neuron-like morphological change of Neuro-2a cells induced by a Rho effector, constitutively active mDia; however, the suppressive effects of variants 2 and 3 were weaker than that of full-length SCAI variant 1, indicating that the SCAI-mediated change toward a neuronal morphology appeared to be consistent with their nuclear localization. These findings indicate that generation of multiple SCAI splice variants fines-tune neuronal morphology.
  • Tomoaki Miyata, Keietsu Kikuchi, Daisuke Ihara, Maki Kaito, Yuta Ishibashi, Tomoyuki Hakamata, Tetsuya Yamada, Mitsuru Ishikawa, Miho Mizukoshi, Shizuku Shoji, Mamoru Fukuchi, Masaaki Tsuda, Yamato Hida, Toshihisa Ohtsuka, Marisa Kaneda, Akiko Tabuchi
    Biochemical and biophysical research communications 528(2) 322-329 2020年5月15日  査読有り
    Phosphatase and actin regulator 3/nuclear scaffold-associated protein phosphatase 1-inhibiting protein (Phactr3/Scapinin) is an actin- and protein phosphatase 1 (PP1)-binding protein known to negatively regulate axon elongation. In this study, we examined the expression pattern of Phactr3/Scapinin in several tissues and investigated the effect of Phactr3/Scapinin on dendritic morphology of cortical neurons. Results showed that Phactr3/Scapinin expression was up-regulated in the developing brain and enriched in neurons and in the postsynaptic density fraction, but not in astrocytes. Overexpression of wild type or mutant Phactr3/Scapinin, which lacked actin-binding activity, resulted in increased dendritic complexity and percentage of spines with a mushroom or stubby shape, as well as a decrease in spine density. However, overexpression of mutant Phactr3/Scapinin that lacked PP1-binding activity did not. Taken together, these findings suggest that Phactr3/Scapinin expression is neuronal and might contribute to synaptic formation via distinct actin- and PP1-binding domains involved in dendritic and axonal morphology, respectively.
  • Satoru Morimoto, Mitsuru Ishikawa, Hirotaka Watanabe, Miho Isoda, Masaki Takao, Shiho Nakamura, Fumiko Ozawa, Yoshifumi Hirokawa, Shigeki Kuzuhara, Hideyuki Okano, Yasumasa Kokubo
    Antioxidants (Basel, Switzerland) 9(5) 2020年5月14日  査読有り
    Amyotrophic lateral sclerosis and Parkinsonism-dementia complex (ALS/PDC) is a unique endemic neurodegenerative disease, with high-incidence foci in Kii Peninsula, Japan. To gather new insights into the pathological mechanisms underlying Kii ALS/PDC, we performed transcriptome analyses of patient brains. We prepared frozen brains from three individuals without neurodegenerative diseases, three patients with Alzheimer's disease, and 21 patients with Kii ALS/PDC, and then acquired microarray data from cerebral gray and white matter tissues. Microarray results revealed that expression levels of genes associated with heat shock proteins, DNA binding/damage, and senescence were significantly altered in patients with ALS/PDC compared with healthy individuals. The RNA expression pattern observed for ALS-type brains was similar to that of PDC-type brains. Additionally, pathway and network analyses indicated that the molecular mechanism underlying ALS/PDC may be associated with oxidative phosphorylation of mitochondria, ribosomes, and the synaptic vesicle cycle; in particular, upstream regulators of these mechanisms may be found in synapses and during synaptic trafficking. Furthermore, phenotypic differences between ALS-type and PDC-type were observed, based on HLA haplotypes. In conclusion, determining the relationship between stress-responsive proteins, synaptic dysfunction, and the pathogenesis of ALS/PDC in the Kii peninsula may provide new understanding of this mysterious disease.
  • Mitsuru Ishikawa, Takeshi Aoyama, Shoichiro Shibata, Takefumi Sone, Hiroyuki Miyoshi, Hirotaka Watanabe, Mari Nakamura, Saori Morota, Hiroyuki Uchino, Andrew S Yoo, Hideyuki Okano
    Cells 9(3) 532 2020年2月25日  査読有り筆頭著者
    Obtaining differentiated cells with high physiological functions by an efficient, but simple and rapid differentiation method is crucial for modeling neuronal diseases in vitro using human pluripotent stem cells (hPSCs). Currently, methods involving the transient expression of one or a couple of transcription factors have been established as techniques for inducing neuronal differentiation in a rapid, single step. It has also been reported that microRNAs can function as reprogramming effectors for directly reprogramming human dermal fibroblasts to neurons. In this study, we tested the effect of adding neuronal microRNAs, miRNA-9/9*, and miR-124 (miR-9/9*-124), for the neuronal induction method of hPSCs using Tet-On-driven expression of the Neurogenin2 gene (Ngn2), a proneural factor. While it has been established that Ngn2 can facilitate differentiation from pluripotent stem cells into neurons with high purity due to its neurogenic effect, a long or indefinite time is required for neuronal maturation with Ngn2 misexpression alone. With the present method, the cells maintained a high neuronal differentiation rate while exhibiting increased gene expression of neuronal maturation markers, spontaneous calcium oscillation, and high electrical activity with network bursts as assessed by a multipoint electrode system. Moreover, when applying this method to iPSCs from Alzheimer's disease (AD) patients with presenilin-1 (PS1) or presenilin-2 (PS2) mutations, cellular phenotypes such as increased amount of extracellular secretion of amyloid β42, abnormal oxygen consumption, and increased reactive oxygen species in the cells were observed in a shorter culture period than those previously reported. Therefore, it is strongly anticipated that the induction method combining Ngn2 and miR-9/9*-124 will enable more rapid and simple screening for various types of neuronal disease phenotypes and promote drug discovery.
  • Sho M, Ichiyanagi N, Imaizumi K, Ishikawa M, Morimoto S, Watanabe H, Okano H
    Neuroscience research 158 47-55 2019年10月10日  査読有り
  • 田中 泰圭, 石川 充, 日暮 憲道, 岡野 栄之, 廣瀬 伸一
    てんかん研究 37(2) 614-614 2019年9月  
  • Ishii T, Ishikawa M, Fujimori K, Maeda T, Kushima I, Arioka Y, Mori D, Nakatake Y, Yamagata B, Nio S, Kato TA, Yang N, Wernig M, Kanba S, Mimura M, Ozaki N, Okano H
    eNeuro 6(5) ENEURO.0403-18.2019 2019年9月  査読有り
  • Tetsuya Akiyama, Naoki Suzuki, Mitsuru Ishikawa, Koki Fujimori, Takefumi Sone, Jiro Kawada, Ryo Funayama, Fumiyoshi Fujishima, Shio Mitsuzawa, Kensuke Ikeda, Hiroya Ono, Tomomi Shijo, Shion Osana, Matsuyuki Shirota, Tadashi Nakagawa, Yasuo Kitajima, Ayumi Nishiyama, Rumiko Izumi, Satoru Morimoto, Yohei Okada, Takayuki Kamei, Mayumi Nishida, Masahiro Nogami, Shohei Kaneda, Yoshiho Ikeuchi, Hiroaki Mitsuhashi, Keiko Nakayama, Teruo Fujii, Hitoshi Warita, Hideyuki Okano, Masashi Aoki
    EBioMedicine 45 362-378 2019年7月  査読有り
    BACKGROUND: The characteristic structure of motor neurons (MNs), particularly of the long axons, becomes damaged in the early stages of amyotrophic lateral sclerosis (ALS). However, the molecular pathophysiology of axonal degeneration remains to be fully elucidated. METHOD: Two sets of isogenic human-induced pluripotent stem cell (hiPSCs)-derived MNs possessing the single amino acid difference (p.H517D) in the fused in sarcoma (FUS) were constructed. By combining MN reporter lentivirus, MN specific phenotype was analyzed. Moreover, RNA profiling of isolated axons were conducted by applying the microfluidic devices that enable axon bundles to be produced for omics analysis. The relationship between the target gene, which was identified as a pathological candidate in ALS with RNA-sequencing, and the MN phenotype was confirmed by intervention with si-RNA or overexpression to hiPSCs-derived MNs and even in vivo. The commonality was further confirmed with other ALS-causative mutant hiPSCs-derived MNs and human pathology. FINDINGS: We identified aberrant increasing of axon branchings in FUS-mutant hiPSCs-derived MN axons compared with isogenic controls as a novel phenotype. We identified increased level of Fos-B mRNA, the binding target of FUS, in FUS-mutant MNs. While Fos-B reduction using si-RNA or an inhibitor ameliorated the observed aberrant axon branching, Fos-B overexpression resulted in aberrant axon branching even in vivo. The commonality of those phenotypes was further confirmed with other ALS causative mutation than FUS. INTERPRETATION: Analyzing the axonal fraction of hiPSC-derived MNs using microfluidic devices revealed that Fos-B is a key regulator of FUS-mutant axon branching. FUND: Japan Agency for Medical Research and development; Japanese Ministry of Education, Culture, Sports, Science and Technology Clinical Research, Innovation and Education Center, Tohoku University Hospital; Japan Intractable Diseases (Nanbyo) Research Foundation; the Kanae Foundation for the Promotion of Medical Science; and "Inochi-no-Iro" ALS research grant.
  • Keietsu Kikuchi, Daisuke Ihara, Mamoru Fukuchi, Hiroki Tanabe, Yuta Ishibashi, Junya Tsujii, Masaaki Tsuda, Marisa Kaneda, Hiroyuki Sakagami, Hiroyuki Okuno, Haruhiko Bito, Yuya Yamazaki, Mitsuru Ishikawa, Akiko Tabuchi
    Journal of neurochemistry 148(2) 204-218 2019年1月  査読有り
    The expression of immediate early genes (IEGs) is thought to be an essential molecular basis of neuronal plasticity for higher brain function. Many IEGs contain serum response element in their transcriptional regulatory regions and their expression is controlled by serum response factor (SRF). SRF is known to play a role in concert with transcriptional cofactors. However, little is known about how SRF cofactors regulate IEG expression during the process of neuronal plasticity. We hypothesized that one of the SRF-regulated neuronal IEGs, activity-regulated cytoskeleton-associated protein (Arc; also termed Arg3.1), is regulated by an SRF coactivator, megakaryoblastic leukemia (MKL). To test this hypothesis, we initially investigated which binding site of the transcription factor or SRF cofactor contributes to brain-derived neurotrophic factor (BDNF)-induced Arc gene transcription in cultured cortical neurons using transfection and reporter assays. We found that BDNF caused robust induction of Arc gene transcription through a cAMP response element, binding site of myocyte enhancer factor 2, and binding site of SRF in an Arc enhancer, the synaptic activity-responsive element (SARE). Regardless of the requirement for the SRF-binding site, the binding site of a ternary complex factor, another SRF cofactor, did not affect BDNF-mediated Arc gene transcription. In contrast, chromatin immunoprecipitation revealed occupation of MKL at the SARE. Furthermore, knockdown of MKL2, but not MKL1, significantly decreased BDNF-mediated activation of the SARE. Taken together, these findings suggest a novel mechanism by which MKL2 controls the Arc SARE in response to BDNF stimulation.
  • Sho Yoshimatsu, Takefumi Sone, Mayutaka Nakajima, Tsukika Sato, Ryotaro Okochi, Mitsuru Ishikawa, Mari Nakamura, Erika Sasaki, Seiji Shiozawa, Hideyuki Okano
    PloS one 14(8) e0221164 2019年  査読有り
    Knock-in (KI) gene targeting can be employed for a wide range of applications in stem cell research. However, vectors for KI require multiple complicated processes for construction, including multiple times of digestion/ligation steps and extensive restriction mapping, which has imposed limitations for the robust applicability of KI gene targeting. To circumvent this issue, here we introduce versatile and systematic methods for generating KI vectors by molecular cloning. In this approach, we employed the Multisite Gateway technology, an efficient in vitro DNA recombination system using proprietary sequences and enzymes. KI vector construction exploiting these methods requires only efficient steps, such as PCR and recombination, enabling robust KI gene targeting. We show that combinatorial usage of the KI vectors generated using this method and site-specific nucleases enabled the precise integration of fluorescent protein genes in multiple loci of human and common marmoset (marmoset; Callithrix jacchus) pluripotent stem cells. The methods described here will facilitate the usage of KI technology and ultimately help to accelerate stem cell research.
  • Koki Fujimori, Mitsuru Ishikawa, Asako Otomo, Naoki Atsuta, Ryoichi Nakamura, Tetsuya Akiyama, Shinji Hadano, Masashi Aoki, Hideyuki Saya, Gen Sobue, Hideyuki Okano
    Nature medicine 24(10) 1579-1589 2018年10月  査読有り
    Amyotrophic lateral sclerosis (ALS) is a heterogeneous motor neuron disease for which no effective treatment is available, despite decades of research into SOD1-mutant familial ALS (FALS). The majority of ALS patients have no familial history, making the modeling of sporadic ALS (SALS) essential to the development of ALS therapeutics. However, as mutations underlying ALS pathogenesis have not yet been identified, it remains difficult to establish useful models of SALS. Using induced pluripotent stem cell (iPSC) technology to generate stem and differentiated cells retaining the patients' full genetic information, we have established a large number of in vitro cellular models of SALS. These models showed phenotypic differences in their pattern of neuronal degeneration, types of abnormal protein aggregates, cell death mechanisms, and onset and progression of these phenotypes in vitro among cases. We therefore developed a system for case clustering capable of subdividing these heterogeneous SALS models by their in vitro characteristics. We further evaluated multiple-phenotype rescue of these subclassified SALS models using agents selected from non-SOD1 FALS models, and identified ropinirole as a potential therapeutic candidate. Integration of the datasets acquired in this study permitted the visualization of molecular pathologies shared across a wide range of SALS models.
  • Fumiko Kusunoki Nakamoto, Satoshi Okamoto, Jun Mitsui, Takefumi Sone, Mitsuru Ishikawa, Yorihiro Yamamoto, Yumi Kanegae, Yuhki Nakatake, Kent Imaizumi, Hiroyuki Ishiura, Shoji Tsuji, Hideyuki Okano
    Scientific reports 8(1) 14215-14215 2018年9月21日  査読有り
    Multiple-system atrophy (MSA) is a neurodegenerative disease characterized by autonomic failure with various combinations of parkinsonism, cerebellar ataxia, and pyramidal dysfunction. We previously reported that functionally impaired variants of COQ2, which encodes an essential enzyme in the biosynthetic pathway of coenzyme Q10, are associated with MSA. Here, we report functional deficiencies in mitochondrial respiration and the antioxidative system in induced pluripotent stem cell (iPSC)-derived neurons from an MSA patient with compound heterozygous COQ2 mutations. The functional deficiencies were rescued by site-specific CRISPR/Cas9-mediated gene corrections. We also report an increase in apoptosis of iPSC-derived neurons from MSA patients. Coenzyme Q10 reduced apoptosis of neurons from the MSA patient with compound heterozygous COQ2 mutations. Our results reveal that cellular dysfunctions attributable to decreased coenzyme Q10 levels are related to neuronal death in MSA, particularly in patients with COQ2 variants, and may contribute to the development of therapy using coenzyme Q10 supplementation.
  • Yuko Arioka, Emiko Shishido, Hisako Kubo, Itaru Kushima, Akira Yoshimi, Hiroki Kimura, Kanako Ishizuka, Branko Aleksic, Takuji Maeda, Mitsuru Ishikawa, Naoko Kuzumaki, Hideyuki Okano, Daisuke Mori, Norio Ozaki
    Translational psychiatry 8(1) 129-129 2018年7月19日  査読有り
    Reelin is a protein encoded by the RELN gene that controls neuronal migration in the developing brain. Human genetic studies suggest that rare RELN variants confer susceptibility to mental disorders such as schizophrenia. However, it remains unknown what effects rare RELN variants have on human neuronal cells. To this end, the analysis of human neuronal dynamics at the single-cell level is necessary. In this study, we generated human-induced pluripotent stem cells carrying a rare RELN variant (RELN-del) using targeted genome editing; cells were further differentiated into highly homogeneous dopaminergic neurons. Our results indicated that RELN-del triggered an impaired reelin signal and decreased the expression levels of genes relevant for cell movement in human neurons. Single-cell trajectory analysis revealed that control neurons possessed directional migration even in vitro, while RELN-del neurons demonstrated a wandering type of migration. We further confirmed these phenotypes in neurons derived from a patient carrying the congenital RELN-del. To our knowledge, this is the first report of the biological significance of a rare RELN variant in human neurons based on individual neuron dynamics. Collectively, our approach should be useful for studying reelin function and evaluating mental disorder susceptibility, focusing on individual human neuronal migration.
  • Yasuyoshi Tanaka, Takefumi Sone, Norimichi Higurashi, Tetsushi Sakuma, Sadafumi Suzuki, Mitsuru Ishikawa, Takashi Yamamoto, Jun Mitsui, Hitomi Tsuji, Hideyuki Okano, Shinichi Hirose
    Stem Cell Research 28 100-104 2018年4月1日  査読有り
    Dravet syndrome (DS) is an infantile epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene encoding the α1 subunit of the voltage-gated sodium channel Nav1.1. As an in vitro model of this disease, we previously generated an induced pluripotent stem cell (iPSC) line from a patient with DS carrying a c.4933C&gt T (p.R1645*) substitution in SCN1A. Here, we describe developing a genome-edited control cell line from this DS iPSC line by substituting the point mutation with the wild-type residue. This artificial control iPSC line will be a powerful tool for research into the pathology of DS.
  • Marisa Kaneda, Hiroyuki Sakagami, Yamato Hida, Toshihisa Ohtsuka, Natsumi Satou, Yuta Ishibashi, Mamoru Fukuchi, Anna Krysiak, Mitsuru Ishikawa, Daisuke Ihara, Katarzyna Kalita, Akiko Tabuchi
    Scientific reports 8(1) 727-727 2018年1月15日  査読有り
    The megakaryoblastic leukaemia (MKL) family are serum response factor (SRF) coactivators, which are highly expressed in the brain. Accordingly, MKL plays important roles in dendritic morphology, neuronal migration, and brain development. Further, nucleotide substitutions in the MKL1 and MKL2 genes are found in patients with schizophrenia and autism spectrum disorder, respectively. Thus, studies on the precise synaptic localisation and function of MKL in neurons are warranted. In this study, we generated and tested new antibodies that specifically recognise endogenously expressed MKL1 and MKL2 proteins in neurons. Using these reagents, we biochemically and immunocytochemically show that MKL1 and MKL2 are localised at synapses. Furthermore, shRNA experiments revealed that postsynaptic deletion of MKL1 or MKL2 reduced the percentage of mushroom- or stubby-type spines in cultured neurons. Taken together, our findings suggest that MKL1 and MKL2 are present at synapses and involved in dendritic spine maturation. This study may, at least in part, contribute to better understanding of the molecular mechanisms underlying MKL-mediated synaptic plasticity and neurological disorders.
  • Daisuke Ihara, Mamoru Fukuchi, Momoko Katakai, Yo Shinoda, Ritsuko Katoh-Semba, Teiichi Furuichi, Mitsuru Ishikawa, Akiko Tabuchi, Masaaki Tsuda
    Cell structure and function 42(2) 141-148 2017年10月28日  査読有り
    Deltamethrin (DM), a type II pyrethroid, robustly increases brain-derived neurotrophic factor (Bdnf) expression and has a neurotrophic effect in primary cultures of rat cortical neurons. In this study, we investigated the effect of DM on neurite morphology in cultured rat cortical neurons. DM significantly increased neurite outgrowth, but this increase was abolished when the BDNF scavenger tropomyosin receptor kinase B (TrkB)-Fc was added 10 min before the DM treatment. In contrast, the addition of TrkB-Fc 1 h after the treatment did not affect DM-induced neurite outgrowth. Our previous research has indicated that type II, but not type I, pyrethroids have the ability to induce Bdnf mRNA expression, but neither permethrin nor cypermethrin, which are type I and type II pyrethroids, respectively, affected neurite outgrowth in the current study. These results suggest that this effect is not due to increased Bdnf expression, and the effect is unique to DM. We previously demonstrated that calcineurin plays a role in the DM-mediated induction of Bdnf expression. However, the calcineurin inhibitor FK506 did not significantly affect DM-induced neurite outgrowth. DM-induced neurite outgrowth was abolished by U0126 and rapamycin, indicating the involvement of the mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) pathways. Taken together, these findings suggest that DM activates endogenous BDNF/TrkB-mediated MAPK and mTOR pathways, thereby increasing neurite outgrowth.Key words: BDNF, Deltamethrin, MAPK, mTOR, Neurite outgrowth.
  • Keietsu Kikuchi, Jun Shiota, Tetsuya Yamada, Mitsuru Ishikawa, Daisuke Ihara, Mamoru Fukuchi, Masaaki Tsuda, Akiko Tabuchi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 492(3) 474-479 2017年10月  査読有り
    CCG-1423, a chemical inhibitor of Rho signaling, blocks serum response factor (SRF)/megakaryoblastic leukemia 1 (MKL1)-mediated gene expression by inhibiting the nuclear accumulation of MKL1. Several studies have suggested that CCG-1423 interacts not only with MKL1, which has a critical role in the regulation of neuronal morphology, but also with phosphatase and actin regulator 1 (Phactrl), which is localized at synapses. However, the effect of CCG-1423 on neuronal cells, especially on neuronal morphology, remains to be determined. In this study, we focused on the effect of CCG-1423 on axonal elongation, dendritic length, dendritic complexity and dendritic spine morphology. Incubation of cortical neuron cultures with up to 10 sM CCG-1423 for 72 h did not significantly affect cell viability. CCG-1423 inhibited axonal elongation and blocked the increase of dendritic length and complexity, but did not affect dendritic spine morphology. Here, we demonstrated for the first time that CCG-1423 affects neurite elongation, except for dendritic spines, without affecting neuronal cell viability. This study provides a better understanding of the effects of CCG-1423 on neurons, which may be useful for the assessment of the potential clinical application of CCG-1423 and its derivatives. (C) 2017 Elsevier Inc. All rights reserved.
  • Takanobu Nakazawa, Masataka Kikuchi, Mitsuru Ishikawa, Hidenaga Yamamori, Kazuki Nagayasu, Takuya Matsumoto, Michiko Fujimoto, Yuka Yasuda, Mikiya Fujiwara, Shota Okada, Kensuke Matsumura, Atsushi Kasai, Atsuko Hayata-Takano, Norihito Shintani, Shusuke Numata, Kazuhiro Takuma, Wado Akamatsu, Hideyuki Okano, Akihiro Nakaya, Hitoshi Hashimoto, Ryota Hashimoto
    SCHIZOPHRENIA RESEARCH 181 75-82 2017年3月  査読有り
    Schizophrenia is a chronic psychiatric disorderwith complex genetic and environmental origins. While many antipsychotics have been demonstrated as effective in the treatment of schizophrenia, a substantial number of schizophrenia patients are partially or fully unresponsive to the treatment. Clozapine is the most effective antipsychotic drug for treatment-resistant schizophrenia; however, clozapine has rare but serious side-effects. Furthermore, there is inter-individual variability in the drug response to clozapine treatment. Therefore, the identification of the molecular mechanisms underlying the action of clozapine and drug response predictors is imperative. In the present study, we focused on a pair ofmonozygotic twin caseswith treatment-resistant schizophrenia, inwhich one twin responded well to clozapine treatment and the other twin did not. Using induced pluripotent stem (iPS) cell-based technology, we generated neurons from iPS cells derived from these patients and subsequently performed RNA-sequencing to compare the transcriptome profiles of the mock or clozapine-treated neurons. Although, these iPS cells similarly differentiated into neurons, several genes encoding homophilic cell adhesion molecules, such as protocadherin genes, showed differential expression patterns between these two patients. These results, which contribute to the current understanding of the molecular mechanisms of clozapine action, establish a new strategy for the use of monozygotic twin studies in schizophrenia research. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  • Naoki Ichiyanagi, Koki Fujimori, Masato Yano, Chikako Ishihara-Fujisaki, Takefumi Sone, Tetsuya Akiyama, Yohei Okada, Wado Akamatsu, Takuya Matsumoto, Mitsuru Ishikawa, Yoshinori Nishimoto, Yasuharu Ishihara, Tetsushi Sakuma, Takashi Yamamoto, Hitomi Tsuiji, Naoki Suzuki, Hitoshi Warita, Masashi Aoki, Hideyuki Okano
    Stem cell reports 6(4) 496-510 2016年4月12日  査読有り
    Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disorder. Although its neuropathology is well understood, the cellular and molecular mechanisms are yet to be elucidated due to limitations in the currently available human genetic data. In this study, we generated induced pluripotent stem cells (iPSC) from two familial ALS (FALS) patients with a missense mutation in the fused-in sarcoma (FUS) gene carrying the heterozygous FUS H517D mutation, and isogenic iPSCs with the homozygous FUS H517D mutation by genome editing technology. These cell-derived motor neurons mimicked several neurodegenerative phenotypes including mis-localization of FUS into cytosolic and stress granules under stress conditions, and cellular vulnerability. Moreover, exon array analysis using motor neuron precursor cells (MPCs) combined with CLIP-seq datasets revealed aberrant gene expression and/or splicing pattern in FALS MPCs. These results suggest that iPSC-derived motor neurons are a useful tool for analyzing the pathogenesis of human motor neuron disorders.
  • Takuya Matsumoto, Koki Fujimori, Tomoko Andoh-Noda, Takayuki Ando, Naoko Kuzumaki, Manabu Toyoshima, Hirobumi Tada, Kent Imaizumi, Mitsuru Ishikawa, Ryo Yamaguchi, Miho Isoda, Zhi Zhou, Shigeto Sato, Tetsuro Kobayashi, Manami Ohtaka, Ken Nishimura, Hiroshi Kurosawa, Takeo Yoshikawa, Takuya Takahashi, Mahito Nakanishi, Manabu Ohyama, Nobutaka Hattori, Wado Akamatsu, Hideyuki Okano
    STEM CELL REPORTS 6(3) 422-435 2016年3月  査読有り
    Modeling of neurological diseases using induced pluripotent stem cells (iPSCs) derived from the somatic cells of patients has provided a means of elucidating pathogenic mechanisms and performing drug screening. T cells are an ideal source of patient-specific iPSCs because they can be easily obtained from samples. Recent studies indicated that iPSCs retain an epigenetic memory relating to their cell of origin that restricts their differentiation potential. The classical method of differentiation via embryoid body formation was not suitable for T cell-derived iPSCs (TiPSCs). We developed a neurosphere-based robust differentiation protocol, which enabled TiPSCs to differentiate into functional neurons, despite differences in global gene expression between TiPSCs and adult human dermal fibroblast-derived iPSCs. Furthermore, neurons derived from TiPSCs generated from a juvenile patient with Parkinson's disease exhibited several Parkinson's disease phenotypes. Therefore, we conclude that TiPSCs are a useful tool for modeling neurological diseases.
  • Mizuguchi M, Fuju T, Obita T, Ishikawa M, Tsuda M, Tabuchi A
    Scientific reports 4 5224-5224 2014年6月  査読有り
  • Mitsuru Ishikawa, Jun Shiota, Yuta Ishibashi, Tomoyuki Hakamata, Shizuku Shoji, Mamoru Fukuchi, Masaaki Tsuda, Tomoaki Shirao, Yuko Sekino, Jay M. Baraban, Akiko Tabuchi
    NEUROREPORT 25(8) 585-592 2014年5月  査読有り
    The ability of megakaryoblastic leukemia 1 (MKL1) to function as a serum response factor (SRF) coactivator is regulated through its association with G-actin. In the cytoplasm, MKL1 binds to G-actin through RPXXXEL (RPEL) motifs. However, dissociation of MKL1 from G-actin triggers its translocation into the nucleus where it stimulates SRF-mediated gene expression. Previous characterization of rat MKL1 gene products has identified several isoforms: full-length MKL1, basic, SAP, and coiled-coil domain (BSAC), MKL1-elongated derivative of yield (MELODY), and MKL1met. In this study, we have investigated whether these MKL1 isoforms, which contain different numbers of RPEL motifs, differ in their subcellular localization, transcriptional activity, and effect on dendritic number and axonal length. Immunofluorescent staining of cultured cortical neurons expressing individual FLAG-tagged MKL1 isoforms indicated that all MKL1 isoforms are present in both the cytoplasm and the nucleus. However, MKL1met, which contains two RPEL motifs, shows enhanced nuclear staining compared with the other three isoforms, full-length MKL1, basic, SAP, and coiled-coil domain, and MKL1-elongated derivative of yield, which contain three RPEL motifs. Consistent with its preferential nuclear localization, overexpression of MKL1met, but not other isoforms, increases SRF-mediated transcriptional responses and reduces the number of dendrites. In contrast to the inhibitory effect of MKL1met on dendritic number, axonal length is not affected by overexpression of any of the MKL1 isoforms. These findings suggest that the subcellular localization of MKL1 isoforms, which is mediated by the number of actin-binding RPEL motifs, regulates their effect on SRF-mediated gene expression and dendritic morphology.
  • Mitsuru Ishikawa, Jun Shiota, Yuta Ishibashi, Tomoyuki Hakamata, Shizuku Shoji, Mamoru Fukuchi, Masaaki Tsuda, Tomoaki Shirao, Yuko Sekino, Toshihisa Ohtsuka, Jay M. Baraban, Akiko Tabuchi
    FEBS OPEN BIO 3 387-393 2013年  査読有り
    Megakaryoblastic leukemia 1 (MKL1) is a member of the MKL family of serum response factor (SRF) coactivators. Here we have identified three rat MKL1 transcripts: two are homologues of mouse MKL1 transcripts, full-length MKL1 (FLMKL1) and basic, SAP, and coiled-coil domains (BSAC), the third is a novel transcript, MKL1-elongated derivative of yield (MELODY). These rat MKL1 transcripts are differentially expressed in a wide variety of tissues with highest levels in testis and brain. During brain development, these transcripts display differential patterns of expression. The FLMKL1 transcript encodes two isoforms that utilize distinct translation start sites. The longer form possesses three actin-binding RPXXXEL (RPEL) motifs and the shorter form, MKL1met only has two RPEL motifs. All four rat MKL1 isoforms, FLMKL1, BSAC, MKL1met and MELODY increased SRF-mediated transcription, but not CREB-mediated transcription. Accordingly, the differential expression of MKL1 isoforms may help fine-tune gene expression during brain development. (C) 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies. All rights reserved.
  • Daisuke Ihara, Mamoru Fukuchi, Daisuke Honma, Ichiro Takasaki, Mitsuru Ishikawa, Akiko Tabuchi, Masaaki Tsuda
    NEUROPHARMACOLOGY 62(2) 1091-1098 2012年2月  査読有り
    Pyrethroids, widely used insecticides with low acute toxicity in mammals, affect sodium channels in neurons. In a primary culture of rat cortical neurons, deltamethrin (DM), a type II pyrethroid, markedly enhanced the expression of brain-derived neurotrophic factor (BDNF) exon IV-IX (Bdnf eIV-IX) mRNA. In this study, we found that DM has a neurotrophic effect on cultured neurons and investigated the mechanisms responsible for it. One mu M DM increased cell survival, neurite complexity and length. Neurite complexity and length were reduced not only by a blockade of cellular excitation with GABA or Ca2+ influx via L-type voltage-dependent calcium channels with nicardipine, but also by a blockade of TrkB, a specific receptor for BDNF, with TrkB/Fc. These data indicate DM has neurotrophic actions. DM-induced Bdnf eIV-IX mRNA expression through the calcineurin and ERK/MAPK pathways, the increase of which was reduced by GABA(A) receptor activation. Using a promoter assay, we found that Ca2+-responsive elements including a CRE are involved in the DM-induced activation of the Bdnf promoter IV (Bdnf-pIV). The intracellular concentration of Ca2+ and activation of Bdnf-pIV remained elevated for, at least, 1 and 24 h, respectively. Moreover. GABAA receptor activation or a blockade of Ca2+ influx even after starting the incubation with DM reduced the elevated activity of Bdnf-pIV. These data demonstrated that the prolonged activation of Bdnf-pIV occurred because of this continuous increase in the intracellular Ca2+ concentration. Thus, DM has neurotrophic effects on neurons, likely due to prolonged activation of Bdnf promoter in neurons. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. (C) 2011 Elsevier Ltd. All rights reserved.
  • 石川 充, 西嶋 直紀, 塩田 惇, 阪上 洋行, 土田 邦博, 水越 美帆, 福地 守, 津田 正明, 田渕 明子
    日本生化学会大会・日本分子生物学会年会合同大会講演要旨集 83回・33回 1P-0762 2010年12月  
  • Mitsuru Ishikawa, Naoki Nishijima, Jun Shiota, Hiroyuki Sakagami, Kunihiro Tsuchida, Miho Mizukoshi, Mamoru Fukuchi, Masaaki Tsuda, Akiko Tabuchi
    JOURNAL OF BIOLOGICAL CHEMISTRY 285(43) 32734-32743 2010年10月  査読有り
    Dynamic changes in neuronal morphology and transcriptional regulation play crucial roles in the neuronal network and function. Accumulating evidence suggests that the megakaryoblastic leukemia (MKL) family members, which function not only as actin-binding proteins but also as serum response factor (SRF) transcriptional coactivators, regulate neuronal morphology. However, the extracellular ligands and signaling pathways, which activate MKL-mediated morphological changes in neurons, remain unresolved. Here, we demonstrate that in addition to MKL1, MKL2, highly enriched in the forebrain, strongly contributes to the dendritic complexity, and this process is triggered by stimulation with activin, a member of the transforming growth factor beta (TGF-beta) superfamily. Activin promoted dendritic complexity in a SRF- and MKL-dependent manner without drastically affecting MKL localization and protein levels. In contrast, activin promoted the nuclear export of suppressor of cancer cell invasion (SCAI), which is a corepressor for SRF and MKL. Furthermore, overexpression of SCAI blocked activin-induced SRF transcriptional responses and dendritic complexity. Collectively, these results strongly suggest that activin-SCAI-MKL signaling is a novel pathway that regulates the dendritic morphology of rat cortical neurons by excluding SCAI from the nucleus and activating MKL/SRF-mediated gene expression.
  • 石川 充, 西嶋 直紀, 塩田 惇, 阪上 洋行, 土田 邦博, 津田 正明, 田渕 明子
    生化学 82(8) 770-770 2010年8月  
  • 石川 充, 西嶋 直紀, 阪上 洋行, 土田 邦博, 津田 正明, 田渕 明子
    日本薬学会年会要旨集 130年会(3) 69-69 2010年3月  

MISC

 27

講演・口頭発表等

 14

担当経験のある科目(授業)

 3

共同研究・競争的資金等の研究課題

 18