研究者業績

moriguchi kyoko

  (守口 匡子)

Profile Information

Affiliation
Fujita Health University
Degree
Ph.D(Kyoto University)

J-GLOBAL ID
200901055029738553
researchmap Member ID
1000254918

Committee Memberships

 2

Papers

 14
  • Saori Fukuda, Masanori Kugita, Yuki Higashimoto, Kazuya Shiogama, Hanako Tsujikawa, Kyoko Moriguchi, Naoto Ito, Makoto Sugiyama, Shizuko Nagao, Takayuki Murata, Koki Taniguchi, Satoshi Komoto
    The Journal of general virology, 103(5), May, 2022  
    The group A rotavirus (RVA) genome comprising 11 double-stranded RNAs encodes six structural proteins (VP1-VP4, VP6, and VP7) and six non-structural proteins (NSP1-NSP6). Among these 12 rotaviral proteins, NSP6 has been less studied as to its function. We previously prepared a recombinant NSP6-deficient RVA derived from simian strain SA11-L2 by reverse genetics, and found that the NSP6-deficient virus grew well in cell culture, although its growth was less abundant than that of the parental SA11-L2 strain. In this study, we examined the potency of a recombinant RVA incapable of NSP6 expression to cause diarrhoea in suckling mice. The suckling mice infected with the NSP6-deficient virus apparently experienced diarrhoea, although the symptom was milder and the duration of diarrhoea was shorter than in the mice infected with the authentic SA11-L2 strain. Thus, together with the results obtained for cultured cells in the previous study, it can be concluded that NSP6 is not necessarily required for replication and pathogenicity in vitro and in vivo.
  • Masato Yasuura, Haruko Shirato, Kyoko Higo-Moriguchi, Makoto Fujimaki
    Japanese Journal of Applied Physics, 10 29-31, Jul, 2019  Peer-reviewed
  • Hiroki Ashiba, Yuki Sugiyama, Xiaomin Wang, Haruko Shirato, Kyoko Higo-Moriguchi, Koki Taniguchi, Yoshimichi Ohki, Makoto Fujimaki
    BIOSENSORS & BIOELECTRONICS, 93 260-266, Jul, 2017  Peer-reviewed
    A highly sensitive biosensor to detect norovirus in environment is desired to prevent the spread of infection. In this study, we investigated a design of surface plasmon resonance (SPR)-assisted fluoroimmunosensor to increase its sensitivity and performed detection of norovirus virus-like particles (VLPs). A quantum dot fluorescent dye was employed because of its large Stokes shift. The sensor design was optimized for the CdSe-ZnS-based quantum dots. The optimal design was applied to a simple SPR-assisted fluoroimmunosensor that uses a sensor chip equipped with a V-shaped trench. Excitation efficiency of the quantum dots, degree of electric field enhancement by SPR, and intensity of auto fluorescence of a substrate of the sensor chip were theoretically and experimentally evaluated to maximize the signal-to-noise ratio. As the result, an excitation wavelength of 390 nm was selected to excite SPR on an Al film of the sensor chip. The sandwich assay of norovirus VLPs was performed using the designed sensor. Minimum detectable concentration of 0.01 ng/mL, which corresponds to 100 virus-like particles included in the detection region of the V-trench, was demonstrated. (C) 2016 The Authors. Published by Elsevier B.V.
  • Tomohiro Kawahara, Yutaka Makizaki, Yosuke Oikawa, Yoshiki Tanaka, Ayako Maeda, Masaki Shimakawa, Satoshi Komoto, Kyoko Moriguchi, Hiroshi Ohno, Koki Taniguchi
    PLOS ONE, 12(3), Mar, 2017  Peer-reviewed
    Human rotavirus (RV) infection is a leading cause of dehydrating diarrhea in infants and young children worldwide. Since therapeutic approaches to RV gastroenteritis are limited to alleviation of dehydration with oral rehydration solutions, more direct approaches to palliate symptoms of RV gastroenteritis are required. Treatments with probiotics have been increasingly recognized as alternative safe and low cost treatments for moderate infectious diarrhea. In this study, Bifidobacterium bifidum G9-1 (BBG9-1), which has been used as an intestinal drug for several decades, was shown to have a remarkable protective effect against RV gastroenteritis in a suckling mice model. As well as prophylactic oral administration of BBG9-1 from 2 days before RV infection, therapeutic oral administration of BBG9-1 from 1 day after RV infection significantly alleviated RV-induced diarrhea. Therapeutic administration of BBG9-1 reduced various types of damage in the small intestine, such as epithelial vacuolization and villous shortening, and significantly diminished the infectious RV titer in mixtures of cecal contents and feces. It was also shown that therapeutic administration of BBG9-1 significantly increased the number of acidic mucin-positive goblet cells and the gene expression of mucosal protective factors including MUC2, MUC3, MUC4, TG931 and TFF3 in the small intestine. This led to alleviation of low gut permeability shown as decreased gene expression levels of occludin, claudin-1 and villin-1 after RV infection. Furthermore, in the small intestine, therapeutic administration of BBG9-1 significantly palliated the decreased gene expression of SGLT-1, which plays an important role in water absorption. In the large intestine, administered BBG9-1 was shown to replicate to assimilate undigested nutrients, resulting in normalization of the abnormally high osmotic pressure. These results suggested that water malabsorption caused by RV infection was alleviated in mice administered BBG9-1. Thus, the present study showed that oral administration of BBG9-1 palliated diarrhea partly through protection against RV-induced lesions by inducing mucosal protective factors. Oral administration of BBG9-1 is thought to be an efficient method for management of an RV epidemic for both prophylactic and therapeutic purposes.
  • Hlaing Myat Thu, Theingi Win Myat, Mo Mo Win, Kyaw Zin Thant, Shofiqur Rahman, Kouji Umeda, Sa Van Nguyen, Faustino C. Icatlo, Kyoko Higo-Moriguchi, Koki Taniguchi, Takao Tsuji, Keiji Oguma, Sang Jong Kim, Hyun Suk Bae, Hyuk Joon Choi
    KOREAN JOURNAL FOR FOOD SCIENCE OF ANIMAL RESOURCES, 37(1) 1-9, Feb, 2017  Peer-reviewed
    The rotavirus-induced diarrhea of human and animal neonates is a major public health concern worldwide. Until recently, no effective therapy is available to specifically inactivate the rotavirion particles within the gut. Passive immunotherapy by oral administration of chicken egg yolk antibody (IgY) has emerged of late as a fresh alternative strategy to control infectious diseases of the alimentary tract and has been applied in the treatment of diarrhea due to rotavirus infection. The purpose of this concise review is to evaluate evidence on the properties and performance of anti-rotavirus immunoglobulin Y (IgY) for prevention and treatment of rotavirus diarrhea in human and animal neonates. A survey of relevant anti-rotavirus IgY basic studies and clinical trials among neonatal animals (since 1994-2015) and humans (since 1982-2015) have been reviewed and briefly summarized. Our analysis of a number of rotavirus investigations involving animal and human clinical trials revealed that anti-rotavirus IgY significantly reduced the severity of clinical manifestation of diarrhea among IgY-treated subjects relative to a corresponding control or placebo group. The accumulated information as a whole depicts oral IgY to be a safe and efficacious option for treatment of rotavirus diarrhea in neonates. There is however a clear need for more randomized, placebo controlled and double-blind trials with bigger sample size to further solidify and confirm claims of efficacy and safety in controlling diarrhea caused by rotavirus infection especially among human infants with health issues such as low birth weights or compromised immunity in whom it is most needed.

Misc.

 3

Presentations

 5

Professional Memberships

 1

Research Projects

 8

教育内容・方法の工夫(授業評価等を含む)

 1
  • 件名(英語)
    授業評価結果に基づく改善。
    概要(英語)
    授業評価結果に基づき、配布資料の改善を行った。教科書以外に参考となる書籍を利用した授業も行った。

その他教育活動上特記すべき事項

 2
  • 件名(英語)
    第45回藤田保健衛生大学医学部医学教育ワークショップ
    終了年月日(英語)
    2012/12/01
    概要(英語)
    「入学制の学力低下は本当なのか」に参加した。
  • 件名(英語)
    第3回藤田保健衛生大学大学院FD講演会
    終了年月日(英語)
    2012/10/09
    概要(英語)
    「英語論文:国際派研究者のためのコミュニケーションスキル」に参加した。