Curriculum Vitaes

Yoshiharu Ohno

  (大野 良治)

Profile Information

Affiliation
School of Medicine, Faculty of Medicine, Fujita Health University
Degree
博士(医学)(神戸大学)

J-GLOBAL ID
200901037501461104
researchmap Member ID
1000372100

Research Areas

 1

Awards

 42

Papers

 313
  • Takeshi Yoshikawa, Takahiro Ueda, Yoshiharu Ohno
    Journal of magnetic resonance imaging : JMRI, Sep 16, 2024  
  • Tomoki Takahashi, Yoshiyuki Ozawa, Hidekazu Hattori, Masahiko Nomura, Takahiro Ueda, Tomoya Horiguchi, Kazuyoshi Imaizumi, Yasushi Matsuda, Yasushi Hoshikawa, Yuka Kondo-Kawabe, Tetsuya Tsukamoto, Hiroyuki Nagata, Yoshiharu Ohno
    Journal of thoracic imaging, Sep 16, 2024  
  • Takahiro Ueda, Kaori Yamamoto, Natsuka Yazawa, Ikki Tozawa, Masato Ikedo, Masao Yui, Hiroyuki Nagata, Masahiko Nomura, Yoshiyuki Ozawa, Yoshiharu Ohno
    European radiology experimental, 8(1) 103-103, Sep 10, 2024  
    BACKGROUND: We aimed to determine the capabilities of compressed sensing (CS) and deep learning reconstruction (DLR) with those of conventional parallel imaging (PI) for improving image quality while reducing examination time on female pelvic 1.5-T magnetic resonance imaging (MRI). METHODS: Fifty-two consecutive female patients with various pelvic diseases underwent MRI with T1- and T2-weighted sequences using CS and PI. All CS data was reconstructed with and without DLR. Signal-to-noise ratio (SNR) of muscle and contrast-to-noise ratio (CNR) between fat tissue and iliac muscle on T1-weighted images (T1WI) and between myometrium and straight muscle on T2-weighted images (T2WI) were determined through region-of-interest measurements. Overall image quality (OIQ) and diagnostic confidence level (DCL) were evaluated on 5-point scales. SNRs and CNRs were compared using Tukey's test, and qualitative indexes using the Wilcoxon signed-rank test. RESULTS: SNRs of T1WI and T2WI obtained using CS with DLR were higher than those using CS without DLR or conventional PI (p < 0.010). CNRs of T1WI and T2WI obtained using CS with DLR were higher than those using CS without DLR or conventional PI (p < 0.003). OIQ of T1WI and T2WI obtained using CS with DLR were higher than that using CS without DLR or conventional PI (p < 0.001). DCL of T2WI obtained using CS with DLR was higher than that using conventional PI or CS without DLR (p < 0.001). CONCLUSION: CS with DLR provided better image quality and shorter examination time than those obtainable with PI for female pelvic 1.5-T MRI. RELEVANCE STATEMENT: CS with DLR can be considered effective for attaining better image quality and shorter examination time for female pelvic MRI at 1.5 T compared with those obtainable with PI. KEY POINTS: Patients underwent MRI with T1- and T2-weighted sequences using CS and PI. All CS data was reconstructed with and without DLR. CS with DLR allowed for examination times significantly shorter than those of PI and provided significantly higher signal- and CNRs, as well as OIQ.
  • Naoya Tanabe, Hiroaki Nakagawa, Seiichiro Sakao, Yoshiharu Ohno, Kaoruko Shimizu, Hidetoshi Nakamura, Masayuki Hanaoka, Yasutaka Nakano, Toyohiro Hirai
    Respiratory investigation, 62(6) 995-1005, Aug 29, 2024  
    Chronic obstructive pulmonary disease (COPD) and asthma are common lung diseases with heterogeneous clinical presentations. Lung imaging allows evaluations of underlying pathophysiological changes and provides additional personalized approaches for disease management. This narrative review provides an overview of recent advances in chest imaging analysis using various modalities, such as computed tomography (CT), dynamic chest radiography, and magnetic resonance imaging (MRI). Visual CT assessment localizes emphysema subtypes and mucus plugging in the airways. Dedicated software quantifies the severity and spatial distribution of emphysema and the airway tree structure, including the central airway wall thickness, branch count and fractal dimension of the tree, and airway-to-lung size ratio. Nonrigid registration of inspiratory and expiratory CT scans quantifies small airway dysfunction, local volume changes and shape deformations in specific regions. Lung ventilation and diaphragm movement are also evaluated on dynamic chest radiography. Functional MRI detects regional oxygen transfer across the alveolus using inhaled oxygen and ventilation defects and gas diffusion into the alveolar-capillary barrier tissue and red blood cells using inhaled hyperpolarized 129Xe gas. These methods have the potential to determine local functional properties in the lungs that cannot be detected by lung function tests in patients with COPD and asthma. Further studies are needed to apply these technologies in clinical practice, particularly for early disease detection and tailor-made interventions, such as the efficient selection of patients likely to respond to biologics. Moreover, research should focus on the extension of healthy life expectancy in patients at higher risk and with established diseases.
  • Hirotaka Ikeda, Yoshiharu Ohno, Kaori Yamamoto, Kazuhiro Murayama, Masato Ikedo, Masao Yui, Yunosuke Kumazawa, Yurika Shimamura, Yui Takagi, Yuhei Nakagaki, Satomu Hanamatsu, Yuki Obama, Takahiro Ueda, Hiroyuki Nagata, Yoshiyuki Ozawa, Akiyoshi Iwase, Hiroshi Toyama
    Cancers, 16(9), Apr 28, 2024  
    BACKGROUND: Diffusion-weighted images (DWI) obtained by echo-planar imaging (EPI) are frequently degraded by susceptibility artifacts. It has been suggested that DWI obtained by fast advanced spin-echo (FASE) or reconstructed with deep learning reconstruction (DLR) could be useful for image quality improvements. The purpose of this investigation using in vitro and in vivo studies was to determine the influence of sequence difference and of DLR for DWI on image quality, apparent diffusion coefficient (ADC) evaluation, and differentiation of malignant from benign head and neck tumors. METHODS: For the in vitro study, a DWI phantom was scanned by FASE and EPI sequences and reconstructed with and without DLR. Each ADC within the phantom for each DWI was then assessed and correlated for each measured ADC and standard value by Spearman's rank correlation analysis. For the in vivo study, DWIs obtained by EPI and FASE sequences were also obtained for head and neck tumor patients. Signal-to-noise ratio (SNR) and ADC were then determined based on ROI measurements, while SNR of tumors and ADC were compared between all DWI data sets by means of Tukey's Honest Significant Difference test. RESULTS: For the in vitro study, all correlations between measured ADC and standard reference were significant and excellent (0.92 ≤ ρ ≤ 0.99, p < 0.0001). For the in vivo study, the SNR of FASE with DLR was significantly higher than that of FASE without DLR (p = 0.02), while ADC values for benign and malignant tumors showed significant differences between each sequence with and without DLR (p < 0.05). CONCLUSION: In comparison with EPI sequence, FASE sequence and DLR can improve image quality and distortion of DWIs without significantly influencing ADC measurements or differentiation capability of malignant from benign head and neck tumors.

Misc.

 619

Presentations

 800

Teaching Experience

 1

Research Projects

 20