研究者業績
基本情報
- 所属
- 名古屋大学 大学院医学系研究科分子細胞免疫学分野 特任教授藤田医科大学医学部血液内科 客員教授
- 学位
- 医学博士
- 研究者番号
- 70333391
- J-GLOBAL ID
- 200901024897936598
- researchmap会員ID
- 5000002820
血液内科医、造血幹細胞移植医。アロ免疫による移植片対腫瘍効果のメカニズムの解明をライフワークとし、免疫療法への応用を模索している。また、がん微小環境の解明やTIL療法などに取り組んでいる。
研究キーワード
8経歴
11-
2018年8月 - 現在
-
2018年8月 - 現在
-
2009年7月 - 現在
-
2014年4月 - 2018年7月
-
2009年7月 - 2014年3月
学歴
1-
1980年4月 - 1986年3月
委員歴
14-
2016年12月 - 現在
-
2016年4月 - 現在
-
2014年 - 現在
-
2012年 - 現在
受賞
3-
2013年
-
2004年
-
2002年
論文
124-
Int J Hematol (in press)(2) 252-266 2023年 査読有り最終著者責任著者
-
Blood advances 6(11) 3230-3233 2022年1月13日 査読有り
-
International journal of hematology 113(4) 473-479 2021年4月 査読有り最終著者責任著者Negative immunofixation electrophoresis (IFE) of serum and/or urine is a diagnostic marker for determining a complete response (CR) after immunotherapy for multiple myeloma (MM). However, residual therapeutic antibodies such as elotuzumab (IgG-κ), can compromise IFE evaluation when the affected immunoglobulins belong to the same IgG-κ subclass. We thus sought to develop a simple and rapid method to treat patient serum before IFE to distinguish the residual elotuzumab. Serum samples from patients receiving elotuzumab were treated with a predetermined amount of soluble signaling lymphocyte activation molecule F7 (SLAMF7) protein and then subjected to conventional IFE testing. We tested our method in samples from 12 patients. The IgG-κ band in IFE disappeared or shifted after elotuzumab treatment in four patients with no bone marrow minimal residual disease and normalized free light chain, whereas seven patients with any sign of residual MM showed a remaining IgG-κ band after treatment. One-hour incubation of samples with 6-9 molar excess soluble SLAMF7 before IFE was sufficient to distinguish residual elotuzumab in 11 of 12 samples. This simple method does not require special reagents, can be performed in most clinical laboratories, and enables differentiation between patients with a CR and those requiring further treatment.
-
Frontiers in immunology 11 257-257 2020年 査読有り筆頭著者責任著者Minor histocompatibility antigens (mHAgs) in allogeneic hematopoietic stem cell transplantation are highly immunogenic as they are foreign antigens and cause polymorphism between donors and recipients. Adoptive cell therapy with mHAg-specific T cells may be an effective option for therapy against recurring hematological malignancies following transplantation. Genetically modified T cells with T cell receptors (TCRs) specific to mHAgs have been developed, but formation of mispaired chimeric TCRs between endogenous and exogenous TCR chains may compromise their function. An alternative approach is the development of chimeric antigen receptor (CAR)-T cells with TCR-like specificity whose CAR transmembrane and intracellular domains do not compete with endogenous TCR for CD3 complexes and transmit their own activation signals. However, it has been shown that the recognition of low-density antigens by high-affinity CAR-T cells has poor sensitivity and specificity. This mini review focuses on the potential for and limitations of TCR-like CAR-T cells in targeting human leukocyte antigen-bound peptide antigens, based on their recognition mechanisms and their application in targeting mHAgs.
-
Blood 134 3751-3751 2019年11月13日[Background] Leukocytes that lack HLA class I alleles derived from hematopoietic stem progenitor cells (HSPCs) that undergo copy number neutral loss of heterozygosity of the short arm of chromosome 6 (6pLOH) or HLA allelic mutations are often detected in acquired aplastic anemia (AA) patients. The presence of HLA class I allele-lacking leukocytes provides compelling evidence that cytotoxic T lymphocytes (CTLs) are involved in the development of AA. Our recent study showed that, among several HLA-class I alleles that are likely to be lost as a result of 6pLOH, HLA-B*40:02 is the most frequently lost allele in AA. Therefore, HLA-B*4002 is thought to play a critical role in the autoantigen presentation by HSPCs to CTLs. We previously identified the T-cell receptor (TCR) sequences from bone marrow (BM) CD8+ T cells in two CsA-dependent AA patients possessing B4002-lacking leukocytes (Case 1, Espinoza et al, Blood Adv, 2018) and B5401-lacking leukocytes (Case 2, Elbadry et al, Haematologica, 2019) by single-cell T-cell receptor (TCR) sequencing. Identifying the TCRs specific to antigens presented by these HLA class I alleles should allow us to screen autoantigens in AA. [Method] We established B4002+ or B5401+ K562 cell lines expressing CD80 and CD137L for the screening of antigen-specific T cell responses. To identify ligands of the TCR, we transfected peripheral blood (PB) T cells with a retrovirus vector containing different TCR cDNA derived from BM T cells and examined their responses to B4002+CD80+CD137L+ or B5401+CD80+CD137L+ K562 cells. Specific responses of each TCR transfectant to K562 cells or iPSC-derived CD34+ cells were determined using an enzyme-linked immunosorbent assay for detecting IFN-γ. Deep TCR sequencing of a current PB sample taken from the same patients was performed to determine whether or not T cells with specific TCRs persisted after successful immunosuppressive therapy (IST). [Results] In Case 1, two TCR transfectants (TCR-K1 and TCR-K2 which were the third- and second-most frequent TCRs in the BM T cells, respectively) secreted greater IFN-γ levels (1730 pg/mL and 2157 pg/mL, respectively) in response to B4002+CD80+CD137L+ K562 cells than those secreted by the other six transfectants (710 to 1184 pg/mL, respectively). TCR-K1 and TCR-K2 did not respond to an A2402+ counterpart (Figure). Notably, deep TCR sequencing of a current PB sample taken from Case 1 nine years after BM sampling revealed the persistence of the TCR-K1 sequence, suggesting that TCR-K1 may be responsible for CsA dependency of this patient. Deep TCR sequencing of other three AA patients with B4002-lacking leukocytes revealed decreased diversity of the T cell repertoire in CD8+ T cells but failed to reveal the same TCR motifs as Case 1. In Case 2, two TCR transfectants (TCR-K3 and TCR-K4) showed a specific response to B5401+CD80+CD137L+ K562 cells. Furthermore, these 2 TCR transfectants secreted higher amounts of IFN-γ (1.7 and 2.0 folds for TCR-K3 and TCR-K4, respectively) in response to wild-type iPSC-derived CD34+ cells than to B5401(-) CD34+ cells. [Conclusions] Our results suggest that these TCR transfectants recognized some intrinsic antigens derived from K562 cells in a B4002 or B5401-restricted manner. These TCR transfectants are the ideal tools for screening libraries of cDNA expressed by B4002+ COS/293T cells to identify autoantigens in AA. Figure Disclosures Yoroidaka: Ono Pharmaceutical: Honoraria. Nakao:Takeda Pharmaceutical Company Limited: Honoraria; Bristol-Myers Squibb: Honoraria; Alaxion Pharmaceuticals: Honoraria; Ohtsuka Pharmaceutical: Honoraria; Daiichi-Sankyo Company, Limited: Honoraria; Janssen Pharmaceutical K.K.: Honoraria; SynBio Pharmaceuticals: Consultancy; Chugai Pharmaceutical Co.,Ltd: Honoraria; Ono Pharmaceutical: Honoraria; Celgene: Honoraria; Kyowa Kirin: Honoraria; Novartis Pharma K.K: Honoraria.
-
Leukemia 33(7) 1687-1699 2019年7月 査読有り
-
Vox sanguinis 113(8) 787-794 2018年11月 査読有り
-
Blood 132(11) 1134-1145 2018年9月13日 査読有り<title>Key Points</title> T cells expressing a CAR consisting of scFv #213 targeting WT1 peptide/HLA-A*2402 complex killed HLA-A*2402+ WT1+ tumor cell lines. The therapeutic efficacy of #213 scFv CAR-T cells was shown to be enhanced by DC vaccine in a murine xenograft model.
-
International Journal of Hematology 108(2) 208-212 2018年8月1日
-
Blood advances 2(4) 390-400 2018年2月 査読有り
-
Medicine (United States) 96(50) e9160 2017年12月1日 査読有り
-
BLOOD 130(18) 1985-1994 2017年11月 査読有り
-
Hematological Oncology 35(1) 87-93 2017年3月1日
-
NATURE 534(7607) 402-+ 2016年6月 査読有り
-
International Journal of Hematology 103(4) 429-435 2016年4月 査読有り
-
Genes Chromosomes and Cancer 55(3) 242-250 2016年3月1日 査読有り
-
BRITISH JOURNAL OF HAEMATOLOGY 172(1) 131-134 2016年1月 査読有り最終著者責任著者
-
CANCER BIOMARKERS 17(1) 21-32 2016年 査読有り
-
BLOOD 126(25) 2752-2763 2015年12月 査読有り
-
Cytogenetic and Genome Research 146(4) 279-284 2015年12月1日 査読有り
-
Cancer Science 106(11) 1576-1581 2015年11月1日 査読有り
-
BONE MARROW TRANSPLANTATION 50(9) 1187-1194 2015年9月 査読有り
-
TISSUE ANTIGENS 86(3) 164-171 2015年9月 査読有り
-
International Journal of Hematology 102(1) 35-40 2015年7月23日 査読有り
-
CANCER IMMUNOLOGY RESEARCH 3(6) 668-677 2015年6月 査読有り
-
VOX SANGUINIS 108(4) 428-431 2015年5月 査読有り
-
BLOOD 124(21) 2014年12月 査読有り
-
Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy 20(11-12) 774-777 2014年12月 査読有り
-
Gene Therapy 21(6) 575-584 2014年6月 査読有り
-
JOURNAL OF HEMATOLOGY & ONCOLOGY 7 3 2014年1月 査読有り
-
Blood 122(21) 4490-4490 2013年11月15日 査読有りSelective graft-versus-tumor (GVT) reactivity with minimal risk of graft-versus-host disease (GVHD) following allogeneic stem cell transplantation is thought to be induced by targeting minor histocompatibility (H) antigens (Ags) expressed only on patients’ hematopoietic cells. Among HLA-A* 02:01 positive patients, minor H Ags such as HA-1 and HA-2 have been shown to be associated with anti-tumor responses with minimal GVHD and explored for application to adoptive immunotherapy. Because preparation of Ag-specific cytotoxic T cell clones (CTLs) or lines for adoptive immunotherapy is labor-intensive and time consuming, the genetic transfer of T-cell receptors (TCRs) directed toward target Ags into T lymphocytes has been used to efficiently generate anti-tumor T cells without the need for in vitro induction and expansion. Alternatively, T cells could be gene-modified with a chimeric antigen receptor (CAR) harnessing a single chain antibody moiety (scFv). The conventional CAR strategy has the limitation of only targeting cell surface Ags on target cells. One possible way to attain intracellular Ag targeting with a CAR is to generate a TCR-like monoclonal antibody (mAb) as a source of scFv. In this study, we sought to generate highly specific mAbs specific for HA-1H minor H Ag by immunizing mice with tetramerized recombinant HLA-A2 incorporating HA-1H minor H Ag peptides and β2-microglobulin (HA-1H/HLA-A2). We hypothesized that the use of HLA-A2 transgenic mice, which should be tolerant to human HLA-A2, would facilitate efficient induction of mAbs specific for peptides presented on HLA-A2. Phage libraries were generated from splenic B cells and screened by panning for clones reactive to plate-bound HA-1H/HLA-A2 in the presence of free MAGEA4/HLA-A2 for competition. Candidate scFv encoded by obtained phage clones were transformed to scFv tetrameric Ab form or introduced into T cells as CAR coupled to CD28 transmembrane and CD3ζ domains (CD28-ζ). A total of 144 clones were randomly selected from 8.1×108 clones that had been recovered after the third panning. Among 144 clones, 18 (12.5%) showed preferential binding to HA-1/HLA-A2, 137 showed similar binding to both pMHC complexes, and 7 showed reactivity to neither of them. One of 18 scFv Abs, clone #131, demonstrated high affinity (KD = 8.34nM) for the HA-1H/HLA-A2 complex. Primary human CD8 T cells transduced with #131 scFv-CD28-ζ were stained with HA-1H/HLA-A2 tetramers as strongly as a CTL clone, EH6, specific for endogenously HLA-A2- and HA-1H-positive cells. Unexpectedly, however, #131 scFv-CD28-ζ CAR-T cells required ∼100-fold higher Ag density when pulsed exogenously to exert cytotoxicity than did the cognate EH6-CTL. In addition, mAb blocking experiments demonstrated that #131 scFv-CD28-ζCAR-T cells were less sensitive to CD8 blockade when they were completely blocked with HA-1H/HLA-A2 tetramer. These data suggest that T cells with higher affinity antigen receptors than TCRs (average KD ranging between 1μM∼100μM) are less able to recognize low density peptide/MHC antigens as reported in the case of affinity-matured TCR or CAR, and that CD8+ CAR-T cells may not be necessarily CD8-dependent possibly due to failure to form complexes with CD3. <sec> <title>Disclosures:</title> No relevant conflicts of interest to declare. </sec>
-
HUMAN IMMUNOLOGY 74(9) 1103-1110 2013年9月 査読有り
-
Hematology (Amsterdam, Netherlands) 18(2) 74-80 2013年3月 査読有り
-
ANTICANCER RESEARCH 32(12) 5201-5209 2012年12月 査読有り
-
International journal of hematology 96(4) 516-520 2012年10月 査読有り
-
PLOS ONE 7(10) e47126 2012年10月 査読有り
-
Tissue Antigens 80(2) 119-125 2012年8月 査読有り
-
TRANSPLANTATION PROCEEDINGS 44(2) 548-554 2012年3月 査読有り
-
Cancer Science 103(2) 350-359 2012年2月 査読有り
-
IMMUNOLOGICAL INVESTIGATIONS 41(8) 831-846 2012年 査読有り
-
CANCER SCIENCE 102(9) 1622-1629 2011年9月 査読有り
-
[Rinsho ketsueki] The Japanese journal of clinical hematology 52(6) 313-319 2011年6月 査読有り
-
INTERNATIONAL JOURNAL OF HEMATOLOGY 93(2) 176-185 2011年2月 査読有り
-
PLOS ONE 5(7) e11901 2010年7月 査読有り
-
BLOOD 115(19) 3869-3878 2010年5月 査読有り
MISC
81書籍等出版物
3主要な講演・口頭発表等
123-
Replacement of posttransplant cyclophosphamide with a molecularly-targeted drug for GVHD prophylaxis第87回日本血液学会学術集会 2025年10月13日
-
第14回日本臨床腫瘍学会総会. 教育講演2 2016年7月28日 招待有り
-
IBMTR/ABMTR Tandem BMT Meeting 2004年2月 招待有り
担当経験のある科目(授業)
5所属学協会
11-
2009年 - 現在
-
2004年 - 現在
主要なWorks(作品等)
2共同研究・競争的資金等の研究課題
26-
厚生労働省 国立研究開発法人日本医療研究開発機構 2023年6月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 2021年4月 - 2024年3月
-
厚生労働省 AMED 戦略推進部(難病研究課) 免疫アレルギー疾患等実用化研究事業 2019年4月 - 2022年3月
産業財産権
3-
WO2008/023786
-
特許公開2004-269409
社会貢献活動
3教育内容・方法の工夫(授業評価等を含む)
1-
件名血液内科の自作ビデオで集中力を喚起した。開始年月日2009終了年月日2013概要M3に対して、血液内科学分野の授業を年2回行う。M6に対して、国家試験対策授業を行う。M5のポリクリ授業として、講義・病棟説明・血液検査室で臨床血液学を説明する。血液内科試験問題、卒業試験を作成する。
作成した教科書、教材、参考書
1-
件名授業用のパワーポイントスライド、ハンドアウト、ビデオの作成開始年月日2009終了年月日2013概要医学部授業用に、パワーポイントスライドを作成し、毎年アップデートしている。視覚的な授業のため、血液標本の作製方法、鏡検方法などを手作りビデオで説明する。
その他教育活動上特記すべき事項
4-
件名学内外における卒後教育やコメディカルへの講義終了年月日2013/10/18概要平成25年度愛知県技師会講演会
-
件名学内外における卒後教育やコメディカルへの講義終了年月日2012/06/17概要平成24年度認定輸血検査技師制度合同研修会
-
件名学内外における卒後教育やコメディカルへの講義概要名城大学薬学部にて血液内科学の臨床実習前講義を実施
-
件名学内外における卒後教育やコメディカルへの講義概要輸血セミナーの企画・開催