研究者業績
Profile Information
- Affiliation
- Guest Professor, Fujita Health University
- Degree
- Immunology(Nagoya University)
- Other name(s) (e.g. nickname)
- Kyoko INAGAKI-OHARA
- J-GLOBAL ID
- 200901086797054062
- researchmap Member ID
- 5000058550
Research Interests
2Research Areas
1Research History
6Papers
34-
Archives of biochemistry and biophysics, 729 109379-109379, Oct 30, 2022Obesity is a risk factor for gastrointestinal malignancies and tumors. However, which factors either protect or predispose the gastrointestinal organs to high-fat diet (HFD)-induced neoplasia remains unclear. Here, we demonstrate that HFD impacts the stomach to a greater extent as compared to the colorectum, resulting in leptin receptor (LepR) signaling-mediated neoplasia in the tissues. HFD activated leptin signaling, which in turn, accelerates the pathogenesis in the gastric mucosa more than that in the colorectum along with ectopic TFF3 expression. Moreover, in the stomach, higher levels of phosphorylated epidermal growth factor receptor (EGFR) in addition to the activation of STAT3 and Akt were observed as compared to the colorectum. The mice with LepR deletion in the gastrointestinal epithelium exhibited a suppressed induction of leptin, TFF3, and phosphorylated EGFR in the stomach, whereas the levels in the colorectum were insignificant. In co-transfected COS-7 cells with LepR and EGFR plasmid DNA, leptin transactivated EGFR to accelerate TFF3 induction along with activation of STAT3, ERK1/2, Akt, and PI3K p85/p55. Furthermore, TFF3 could bind to EGFR but did not transactivate LepR. Leptin-induced TFF3 induction was markedly suppressed by inhibitors of PI3K (LY294002) and EGFR (Erlotinib). Together, these results suggest a novel role of LepR-mediated signaling in transactivating EGFR that leads to TFF3 expression via the PI3K-Akt pathway. Therefore, this study sheds light on the identification of potentially new therapeutic targets for the treatment of pre-cancerous symptoms in stomach and colorectum.
-
Nutrients, 11(9), Sep, 2019 Peer-reviewedExcess of fat intake leads to obesity and causes a variety of metabolic diseases and cancer. We previously demonstrated that high-lard diet induces intestinal metaplasia, a precancerous lesion of the stomach mediated by leptin signaling. This study aims to investigate which kinds of dietary fat cause the intestinal metaplasia onset. We fed eight kinds of high-fat diets (HFDs) of animal or plant origin to mice evaluated their effect on gastric pathogenesis. Five types of dietary fat were divided according to their observed effects: Obese with high metaplasia (group I; beef tallow, lard, and hydrogenated coconut oil), non-obese with high metaplasia (group II; linseed oil), obese without metaplasia (group III; corn oil and olive oil), non-obese without metaplasia (group IV, soybean oil) and lean without metaplasia (group V; cocoa butter). The group I and II diets induced leptin, phosphorylated leptin receptor (ObR), signal transducer and activator 3 (STAT3), and increased intracellular β-catenin accumulation in the stomach. Moreover, mice fed these HFDs with 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), a gastric carcinogen, and further accelerated dysplasia in the stomach. Lactobacillus occupancy in the stomach increased in all HFDs except hydrogenated coconut oil. Our findings suggest that HFDs inducing leptin signaling accelerate the enhancement of protumorigenic gastric microenvironment independent of body mass gain or microbiome changes.
-
Nutrition (Burbank, Los Angeles County, Calif.), 67-68 110556-110556, Jul, 2019 Peer-reviewedOBJECTIVES: Obesity is a risk factor for malignancy in various tissues, and has been associated with gut microbiota alterations. However, the link between obesity-associated microbiota and gastric pathogenesis has not been clarified. We demonstrated that high-fat-diet (HFD) feeding causes intestinal metaplasia, which are precancerous lesions of the stomach, with augmented gastric leptin signaling. The aim of this study was to investigate the precise role of leptin signaling in the altered microbiota composition and pathogenesis in the stomach during diet-induced obesity. METHODS: Male C57 BL/6 J, leptin receptor (Lepr)-mutated db/db, and gastrointestinal epithelium-specific Lepr conditional knockout (T3 b-Lepr cKO) mice were fed a HFD or control diet. Gastrointestinal microbiota was analyzed by 16 S rRNA gene sequences and quantitative polymerase chain reaction. Transplantation of gastric microbiota of HFD-fed mice was performed to evaluate metaplasia onset in recipient mice. RESULTS: One week of HFD caused severe microbial dysbiosis in the stomach. The microbiota changes were accompanied by increased gastric leptin, leading to the consequent development of intestinal metaplasia. Transplantation of gastric microbiota from HFD-fed mice induced intestinal metaplasia in recipient mice; however, only a limited effect on pathogenesis was noted. HFD-fed db/db mice did not show a decrease in microbial abundance. Moreover, T3 b-Lepr cKO mice failed spontaneous obesity, and suppressed decreased abundance of gastric microbiota and occurrence of intestinal metaplasia during HFD feeding similar to db/db mice. CONCLUSIONS: Gastric leptin signaling modulates the gastric microbiota community and regulates the pathogenesis in the gastric mucosa.
-
International journal of molecular sciences, 20(11), May, 2019 Peer-reviewedLeptin, an adipocyte-derived hormone and its receptor (ObR) expressed in the hypothalamus are well known as an essential regulator of appetite and energy expenditure. Obesity induces abundant leptin production, however, reduced sensitivity to leptin leads to the development of metabolic disorders, so called leptin resistance. The stomach has been identified as an organ that simultaneously expresses leptin and ObR. Accumulating evidence has shown gastric leptin to perform diverse functions, such as those in nutrient absorption and carcinogenesis in the gastrointestinal system, independent of its well-known role in appetite regulation and obesity. Overexpression of leptin and phosphorylated ObR is implicated in gastric cancer in humans and in murine model, and diet-induced obesity causes precancerous lesions in the stomach in mice. While the underlying pathomechanisms remain unclear, leptin signaling can affect gastric mucosal milieu. In this review, we focus on the significant role of the gastric leptin signaling in neoplasia and tumorigenesis in stomach in the context of hereditary and diet-induced obesity.
-
Human cell, 32(1) 12-21, Oct, 2018 Peer-reviewedAdrenomedullin (AM) exerts a potent anti-inflammatory effect. Intrarectal or consecutive intravenous administrations of AM reduce pathological manifestations in rodent colitis models. However, in clinical applications, a safer administration route that provides stronger alleviation of patient burden is preferred. We investigated whether subcutaneously administered AM is effective against dextran sulfate sodium (DSS)-induced colitis. C57BL/6J mice were administered 1% DSS in drinking water and received AM at 8, 40 or 80 nmol/kg subcutaneously once a day for 7 consecutive days. Subcutaneously administered AM significantly and dose-dependently ameliorated body weight loss, diarrhea, and histological severity of colonic inflammation in DSS-treated mice. The AM therapeutic effect was associated with the upregulation of the production of autocrine AM, and expression of cAMP, c-fos, KLF4, and downregulation of STAT3 and NF-κB p65 phosphorylation, as well as a decrease in proinflammatory cytokine expression in the colon. Subcutaneous AM treatment potently attenuated DSS-induced colitis, which suggests that AM administered subcutaneously in ulcerative colitis (UC) patients may decrease diseases burden and improve quality of life.
Misc.
30-
GASTROENTEROLOGY, 142(5) S346-S347, May, 2012
-
ENDOCRINE JOURNAL, 57 S574-S574, Mar, 2010
-
GUT, 55(2) 212-219, Feb, 2006
Books and Other Publications
2Major Professional Memberships
4-
2012 - Present
-
2009 - Present
-
1993 - Present
Works
4Research Projects
12-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2022 - Mar, 2025
-
県立広島大学, 2017 - 2020
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2016 - Mar, 2019
-
国立国際医療研究センター研究所 県立広島大学, Apr, 2014 - Mar, 2017
-
生理学研究所 国立国際医療研究センター研究所, Apr, 2011 - Mar, 2014