研究者業績

浅井 直也

アサイ ナオヤ  (Naoya Asai)

基本情報

所属
藤田医科大学 医学部 病理学講座 教授
学位
博士(医学)(名古屋大学)

J-GLOBAL ID
200901070978348285
researchmap会員ID
6000001683

研究キーワード

 1

論文

 100
  • Ryota Ando, Yukihiro Shiraki, Yuki Miyai, Hiroki Shimizu, Kazuhiro Furuhashi, Shun Minatoguchi, Katsuhiro Kato, Akira Kato, Tadashi Iida, Yasuyuki Mizutani, Kisuke Ito, Naoya Asai, Shinji Mii, Nobutoshi Esaki, Masahide Takahashi, Atsushi Enomoto
    The Journal of pathology 2023年10月5日  
    Pancreatic stellate cells (PSCs) are stromal cells in the pancreas that play an important role in pancreatic pathology. In chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC), PSCs are known to get activated to form myofibroblasts or cancer-associated fibroblasts (CAFs) that promote stromal fibroinflammatory reactions. However, previous studies on PSCs were mainly based on the findings obtained using ex vivo expanded PSCs, with few studies that addressed the significance of in situ tissue-resident PSCs using animal models. Their contributions to fibrotic reactions in CP and PDAC are also lesser-known. These limitations in our understanding of PSC biology have been attributed to the lack of specific molecular markers of PSCs. Herein, we established Meflin (Islr), a glycosylphosphatidylinositol-anchored membrane protein, as a PSC-specific marker in both mouse and human by using human pancreatic tissue samples and Meflin reporter mice. Meflin-positive (Meflin+ ) cells contain lipid droplets and express the conventional PSC marker Desmin in normal mouse pancreas, with some cells also positive for Gli1, the marker of pancreatic tissue-resident fibroblasts. Three-dimensional analysis of the cleared pancreas of Meflin reporter mice showed that Meflin+ PSCs have long and thin cytoplasmic protrusions, and are localised on the abluminal side of vessels in the normal pancreas. Lineage tracing experiments revealed that Meflin+ PSCs constitute one of the origins of fibroblasts and CAFs in CP and PDAC, respectively. In these diseases, Meflin+ PSC-derived fibroblasts showed a distinctive morphology and distribution from Meflin+ PSCs in the normal pancreas. Furthermore, we showed that the genetic depletion of Meflin+ PSCs accelerated fibrosis and attenuated epithelial regeneration and stromal R-spondin 3 expression, thereby implying that Meflin+ PSCs and their lineage cells may support tissue recovery and Wnt/R-spondin signalling after pancreatic injury and PDAC development. Together, these data indicate that Meflin may be a marker specific to tissue-resident PSCs and useful for studying their biology in both health and disease. © 2023 The Pathological Society of Great Britain and Ireland.
  • 林 孝典, 吉田 淳平, 宗綱 栄二, Behnoush Khaledian, 前田 真男, 水野 真広, 牛田 かおり, 河田 健司, 浅井 直也, 下野 洋平
    日本癌学会総会記事 82回 978-978 2023年9月  
  • Khaledian Behnoush, 吉田 淳平, 林 孝典, 水野 真広, 牛田 かおり, 前田 真男, 宗綱 栄二, 河田 健司, 浅井 直也, 下野 洋平, Shimono Yohei
    日本癌学会総会記事 82回 1349-1349 2023年9月  
  • Takanori Hayashi, Naomi Kobayashi, Kaori Ushida, Naoya Asai, Shogo Nakano, Kimihito Fujii, Takahito Ando, Toshiaki Utsumi
    Genes to cells : devoted to molecular & cellular mechanisms 2023年2月27日  査読有り
    Epithelial-mesenchymal transition (EMT) plays a pivotal role in cancer metastasis and treatment resistance, which worsens prognosis. In phase III trials, eribulin improved overall survival in metastatic breast cancer (MBC) patients. In preclinical studies, eribulin suppressed EMT. However, clinical data on the use of eribulin for MBC patients are limited. In this exploratory, prospective study, we examined the effect of eribulin on EMT in MBC patients. Twenty-two patients aged 44-82 years with recurrent breast cancer or MBC were treated with eribulin. Breast cancer tissue samples were obtained before treatment and on day 15 ± 5 of the first cycle of eribulin treatment. EMT markers (E-cadherin, claudin-3, vimentin, N-cadherin) were analysed using western blotting. EMT changes were evaluated based on the ratio of epithelial to mesenchymal markers before and after treatment in individual tumours. E-cadherin/vimentin, claudin-3/vimentin, E-cadherin/N-cadherin, and claudin-3/N-cadherin ratios were significantly higher after treatment (P = 0.007, P = 0.005, P = 0.006, and P = 0.011, respectively). Based on E-cadherin/vimentin, 65.0% of tumours shifted to an epithelial phenotype, as compared to 66.7% based on claudin-3/vimentin, 84.6% based on E-cadherin/N-cadherin, and 71.4% based on claudin-3/N-cadherin ratios. Thus, our results showed that eribulin suppressed EMT in breast cancer tissues.
  • Shun Minatoguchi, Shoji Saito, Kazuhiro Furuhashi, Yuriko Sawa, Masaki Okazaki, Yuko Shimamura, Ahmad Baseer Kaihan, Yusaku Hashimoto, Yoshinari Yasuda, Akitoshi Hara, Yasuyuki Mizutani, Ryota Ando, Noritoshi Kato, Takuji Ishimoto, Naotake Tsuboi, Nobutoshi Esaki, Makoto Matsuyama, Yukihiro Shiraki, Hiroki Kobayashi, Naoya Asai, Atsushi Enomoto, Shoichi Maruyama
    Scientific Reports 12(1) 2022年12月  
    Abstract Perivascular mesenchymal cells (PMCs), which include pericytes, give rise to myofibroblasts that contribute to chronic kidney disease progression. Several PMC markers have been identified; however, PMC heterogeneity and functions are not fully understood. Here, we describe a novel subset of renal PMCs that express Meflin, a glycosylphosphatidylinositol-anchored protein that was recently identified as a marker of fibroblasts essential for cardiac tissue repair. Tracing the lineage of Meflin+ PMCs, which are found in perivascular and periglomerular areas and exhibit renin-producing potential, showed that they detach from the vasculature and proliferate under disease conditions. Although the contribution of Meflin+ PMCs to conventional α-SMA+ myofibroblasts is low, they give rise to fibroblasts with heterogeneous α-SMA expression patterns. Genetic ablation of Meflin+ PMCs in a renal fibrosis mouse model revealed their essential role in collagen production. Consistent with this, human biopsy samples showed that progressive renal diseases exhibit high Meflin expression. Furthermore, Meflin overexpression in kidney fibroblasts promoted bone morphogenetic protein 7 signals and suppressed myofibroblastic differentiation, implicating the roles of Meflin in suppressing tissue fibrosis. These findings demonstrate that Meflin marks a PMC subset that is functionally distinct from classic pericytes and myofibroblasts, highlighting the importance of elucidating PMC heterogeneity.
  • Khaledian Behnoush, Mizuno Masahiro, 前田 真男, Munetsuna Eiji, Yoshida Jumpei, 浅井 直也, 下野 洋平
    日本癌学会総会記事 81回 P-2107 2022年9月  
  • 前田 真男, 西尾 永司, 林 孝典, ベフヌーシュ・ハレディアン, 牛田 かおり, 岡田 誠治, 鈴木 元, 浅井 直也, 藤井 多久磨, 佐谷 秀行, 下野 洋平
    日本癌学会総会記事 81回 P-2287 2022年9月  
  • 下野 洋平, 久森 重夫, 向山 順子, 林 孝典, 前田 真男, 磯部 大地, 浅井 直也, 掛地 吉弘
    日本癌学会総会記事 81回 MS2-2 2022年9月  
  • Yasuhiro Kondo, Shunsuke Watanabe, Atsuki Naoe, Toshiyuki Takeuchi, Atsuko Niimi, Motoshi Suzuki, Naoya Asai, Seiji Okada, Tomonori Tsuchiya, Mika Murayama, Toshihiro Yasui, Mikihiro Inoue, Tatsuya Suzuki
    Pediatric surgery international 38(8) 1157-1163 2022年8月  査読有り
    PURPOSE: We previously reported that polyphyllin D, a main component of the traditional Chinese medicinal herb Paris polyphylla, exhibited anticancer effects in vitro against human neuroblastoma cells. The aims of this investigation was to examine the presence or absence of in vivo anti-metastasis effects of polyphyllin D were to establish a liver metastasis model of neuroblastoma and to evaluate the anti-metastasis effects of polyphyllin D. METHODS: Subcutaneous and intraperitoneal tumors, and metastasis models were established in immune-deficient BALB/c nude and BALB/c Rag-2/Jak3 double-deficient (BRJ) mice using the human neuroblastoma cell lines IMR-32, LA-N-2, or NB-69. For evaluating polyphyllin D activity, we used a mouse model of liver metastasis with the IMR-32 cells line injected through the tail vein. We analyzed the livers number and area of liver tumors in of the phosphate buffer solution- and polyphyllin D-treated groups. RESULTS: Liver metastasis and intraperitoneal dissemination models were successfully established in immune-deficient BRJ mice using the three human neuroblastoma cell lines. In the liver metastasis, the model of IMR-32 cells, we found that polyphyllin D suppressed both the number and total area of metastatic foci the average number of metastatic foci, average focus areas, and number of cleaved caspase-3-positive cells were significantly lower in the polyphyllin D group (p = 0.016, 0.020, 0.043, respectively). CONCLUSIONS: We developed a mouse models of neuroblastoma metastasis and demonstrated for the first time that polyphyllin D has an antitumor effect on neuroblastoma liver metastases.
  • Shigeo Hisamori, Junko Mukohyama, Sanjay Koul, Takanori Hayashi, Michael Evan Rothenberg, Masao Maeda, Taichi Isobe, Luis Enrique Valencia Salazar, Xin Qian, Darius Michael Johnston, Dalong Qian, Kaiqin Lao, Naoya Asai, Yoshihiro Kakeji, Vincenzo Alessandro Gennarino, Debashis Sahoo, Piero Dalerba, Yohei Shimono
    Journal of gastroenterology 57(6) 407-422 2022年6月  
    BACKGROUND: MicroRNAs (miRNAs) are key regulators of stem cell functions, including self-renewal and differentiation. In this study, we aimed to identify miRNAs that are upregulated during terminal differentiation in the human colon epithelium, and elucidate their role in the mechanistic control of stem cell properties. METHODS: "Bottom-of-the-crypt" (EPCAM+/CD44+/CD66alow) and "top-of-the-crypt" (EPCAM+/CD44neg/CD66ahigh) epithelial cells from 8 primary colon specimens (6 human, 2 murine) were purified by flow cytometry and analyzed for differential expression of 335 miRNAs. The miRNAs displaying the highest upregulation in "top-of-the-crypt" (terminally differentiated) epithelial cells were tested for positive correlation and association with survival outcomes in a colon cancer RNA-seq database (n = 439 patients). The two miRNAs with the strongest "top-of-the-crypt" expression profile were evaluated for capacity to downregulate self-renewal effectors and inhibit in vitro proliferation of colon cancer cells, in vitro organoid formation by normal colon epithelial cells and in vivo tumorigenicity by patient-derived xenografts (PDX). RESULTS: Six miRNAs (miR-200a, miR-200b, miR-200c, miR-203, miR-210, miR-345) were upregulated in "top-of-the-crypt" cells and positively correlated in expression among colon carcinomas. Overexpression of the three miRNAs with the highest inter-correlation coefficients (miR-200a, miR-200b, miR-200c) associated with improved survival. The top two over-expressed miRNAs (miR-200c, miR-203) cooperated synergistically in suppressing expression of BMI1, a key regulator of self-renewal in stem cell populations, and in inhibiting proliferation, organoid-formation and tumorigenicity of colon epithelial cells. CONCLUSION: In the colon epithelium, terminal differentiation associates with the coordinated upregulation of miR-200c and miR-203, which cooperate to suppress BMI1 and disable the expansion capacity of epithelial cells.
  • Yuki Miyai, Daisuke Sugiyama, Tetsunari Hase, Naoya Asai, Tetsuro Taki, Kazuki Nishida, Takayuki Fukui, Toyofumi Fengshi Chen-Yoshikawa, Hiroki Kobayashi, Shinji Mii, Yukihiro Shiraki, Yoshinori Hasegawa, Hiroyoshi Nishikawa, Yuichi Ando, Masahide Takahashi, Atsushi Enomoto
    Life Science Alliance 5(6) e202101230-e202101230 2022年6月  
    Cancer-associated fibroblasts (CAFs) are an integral component of the tumor microenvironment (TME). Most CAFs shape the TME toward an immunosuppressive milieu and attenuate the efficacy of immune checkpoint blockade (ICB) therapy. However, the detailed mechanism of how heterogeneous CAFs regulate tumor response to ICB therapy has not been defined. Here, we show that a recently defined CAF subset characterized by the expression of Meflin, a glycosylphosphatidylinositol-anchored protein marker of mesenchymal stromal/stem cells, is associated with survival and favorable therapeutic response to ICB monotherapy in patients with non-small cell lung cancer (NSCLC). The prevalence of Meflin-positive CAFs was positively correlated with CD4-positive T-cell infiltration and vascularization within non-small cell lung cancer tumors. Meflin deficiency and CAF-specific Meflin overexpression resulted in defective and enhanced ICB therapy responses in syngeneic tumors in mice, respectively. These findings suggest the presence of a CAF subset that promotes ICB therapy efficacy, which adds to our understanding of CAF functions and heterogeneity.
  • Hiroki Kobayashi, Krystyna A Gieniec, Tamsin R M Lannagan, Tongtong Wang, Naoya Asai, Yasuyuki Mizutani, Tadashi Iida, Ryota Ando, Elaine M Thomas, Akihiro Sakai, Nobumi Suzuki, Mari Ichinose, Josephine A Wright, Laura Vrbanac, Jia Q Ng, Jarrad Goyne, Georgette Radford, Matthew J Lawrence, Tarik Sammour, Yoku Hayakawa, Sonja Klebe, Alice E Shin, Samuel Asfaha, Mark L Bettington, Florian Rieder, Nicholas Arpaia, Tal Danino, Lisa M Butler, Alastair D Burt, Simon J Leedham, Anil K Rustgi, Siddhartha Mukherjee, Masahide Takahashi, Timothy C Wang, Atsushi Enomoto, Susan L Woods, Daniel L Worthley
    Gastroenterology 162(3) 890-906 2022年3月  
    BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor β was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.
  • Masahide Takahashi, Hiroki Kobayashi, Yasuyuki Mizutani, Akitoshi Hara, Tadashi Iida, Yuki Miyai, Naoya Asai, Atsushi Enomoto
    Frontiers in Cell and Developmental Biology 9 2021年10月5日  
    Fibroblasts synthesise the extracellular matrix (ECM) such as collagen and elastin, the excessive accumulation of which can lead to fibrosis and organ dysfunction under pathological conditions. Cancer-associated fibroblasts (CAFs) are major constituents of the tumour microenvironment (TME) that accompany the desmoplastic reaction responsible for anti-cancer treatment resistance. Thus, it is important to dissect the roles of CAFs in the TME to develop new therapeutic strategies for refractory cancers. Recent progress in the studies of CAF biology suggests that the functions of CAFs are complicated and that they are composed of functionally distinct populations, including cancer-promoting CAFs (pCAFs) and cancer-restraining CAFs (rCAFs). We recently identified a new cell surface marker for rCAFs in pancreatic and colon cancers, designated as Meflin (mesenchymal stromal cell- and fibroblast-expressing Linx paralogue)/Islr (immunoglobulin super family containing leucine-rich repeat). Based on the distribution of Meflin/Islr-positive cells, we also considered it a specific candidate marker for mesenchymal stroma/stem cells. Meflin/Islr-positive CAFs have been shown to suppress cancer progression by being involved in regulating collagen structures and BMP signalling in the TME. This review describes the function of Meflin/Islr in cancer fibrosis as well as in cardiac and lung fibrosis and its potential in the development of new cancer therapeutics.
  • 下野 洋平, 西村 建徳, 河野 誠之, 渋谷 尚樹, 林 孝典, 柳 久乃, 渡辺 崇, 前田 真男, 掛地 吉弘, 河田 健司, 浅井 直也, 高尾 信太郎, 南 博信, 喜島 祐子, 鈴木 元, 後藤 典子
    日本癌学会総会記事 80回 [CS4-3] 2021年9月  
  • 林 孝典, 前田 真男, 鈴木 元, 浅井 直也, 下野 洋平
    日本癌学会総会記事 80回 [P4-2] 2021年9月  
  • 水野 真広, ベフヌーシュ・ハレディアン, 前田 真男, 田草川 栞里, 矢野 愛佳, 浅井 直也, 下野 洋平
    日本癌学会総会記事 80回 [P13-6] 2021年9月  
  • 矢野 愛佳, 前田 真男, 西尾 永司, 田草川 栞里, 林 孝典, 鈴木 元, 浅井 直也, 藤井 多久磨, 佐谷 秀行, 下野 洋平
    日本癌学会総会記事 80回 [P14-3] 2021年9月  
  • 田草川 栞里, 前田 真男, 矢野 愛佳, 西尾 永司, 林 孝典, 岡田 誠治, 鈴木 元, 浅井 直也, 藤井 多久磨, 佐谷 秀行, 下野 洋平
    日本癌学会総会記事 80回 [P14-4] 2021年9月  
  • Masahiro Mizuno, Behnoush Khaledian, Masao Maeda, Takanori Hayashi, Seiya Mizuno, Eiji Munetsuna, Takashi Watanabe, Seishi Kono, Seiji Okada, Motoshi Suzuki, Shintaro Takao, Hironobu Minami, Naoya Asai, Fumihiro Sugiyama, Satoru Takahashi, Yohei Shimono
    Cancers 13(16) 2021年8月23日  
    Adipose tissue is a component of the tumor microenvironment and is involved in tumor progression. We have previously shown that adipokine adipsin (CFD) functions as an enhancer of tumor proliferation and cancer stem cell (CSC) properties in breast cancers. We established the Cfd-knockout (KO) mice and the mammary adipose tissue-derived stem cells (mADSCs) from them. Cfd-KO in mADSCs significantly reduced their ability to enhance tumorsphere formation of breast cancer patient-derived xenograft (PDX) cells, which was restored by the addition of Cfd in the culture medium. Hepatocyte growth factor (HGF) was expressed and secreted from mADSCs in a Cfd-dependent manner. HGF rescued the reduced ability of Cfd-KO mADSCs to promote tumorsphere formation in vitro and tumor formation in vivo by breast cancer PDX cells. These results suggest that HGF is a downstream effector of Cfd in mADSCs that enhances the CSC properties in breast cancers.
  • Akitoshi Hara, Katsuhiro Kato, Toshikazu Ishihara, Hiroki Kobayashi, Naoya Asai, Shinji Mii, Yukihiro Shiraki, Yuki Miyai, Ryota Ando, Yasuyuki Mizutani, Tadashi Iida, Mikito Takefuji, Toyoaki Murohara, Masahide Takahashi, Atsushi Enomoto
    Genes to cells : devoted to molecular & cellular mechanisms 26(7) 495-512 2021年7月  
    Mesenchymal stem cells (MSCs) are the likely precursors of multiple lines of mesenchymal cells. The existence of bona fide MSCs with self-renewal capacity and differentiation potential into all mesenchymal lineages, however, has been unclear because of the lack of MSC-specific marker(s) that are not expressed by the terminally differentiated progeny. Meflin, a glycosylphosphatidylinositol-anchored protein, is an MSC marker candidate that is specifically expressed in rare stromal cells in all tissues. Our previous report showed that Meflin expression becomes down-regulated in bone marrow-derived MSCs cultured on plastic, making it difficult to examine the self-renewal and differentiation of Meflin-positive cells at the single-cell level. Here, we traced the lineage of Meflin-positive cells in postnatal and adult mice, showing that those cells differentiated into white and brown adipocytes, osteocytes, chondrocytes and skeletal myocytes. Interestingly, cells derived from Meflin-positive cells formed clusters of differentiated cells, implying the in situ proliferation of Meflin-positive cells or their lineage-committed progenitors. These results, taken together with previous findings that Meflin expression in cultured MSCs was lost upon their multilineage differentiation, suggest that Meflin is a useful potential marker to localize MSCs and/or their immature progenitors in multiple tissues.
  • Hisanori Isomura, Ayumu Taguchi, Taisuke Kajino, Naoya Asai, Masahiro Nakatochi, Seiichi Kato, Keiko Suzuki, Kiyoshi Yanagisawa, Motoshi Suzuki, Teruaki Fujishita, Tomoya Yamaguchi, Masahide Takahashi, Takashi Takahashi
    Cancer Science 112(4) 1614-1623 2021年4月  
    We previously reported that ROR1 is a crucial downstream gene for the TTF-1/NKX2-1 lineage-survival oncogene in lung adenocarcinoma, while others have found altered expression of ROR1 in multiple cancer types. Accumulated evidence therefore indicates ROR1 as an attractive molecular target, though it has yet to be determined whether targeting Ror1 can inhibit tumor development and growth in vivo. To this end, genetically engineered mice carrying homozygously floxed Ror1 alleles and an SP-C promoter–driven human mutant EGFR transgene were generated. Ror1 ablation resulted in marked retardation of tumor development and progression in association with reduced malignant characteristics and significantly better survival. Interestingly, gene set enrichment analysis identified a hypoxia-induced gene set (HALLMARK_HYPOXIA) as most significantly downregulated by Ror1 ablation in vivo, which led to findings showing that ROR1 knockdown diminished HIF-1α expression under normoxia and clearly hampered HIF-1α induction in response to hypoxia in human lung adenocarcinoma cell lines. The present results directly demonstrate the importance of Ror1 for in vivo development and progression of lung adenocarcinoma, and also identify Ror1 as a novel regulator of Hif-1α. Thus, a future study aimed at the development of a novel therapeutic targeting ROR1 for treatment of solid tumors such as seen in lung cancer, which are frequently accompanied with a hypoxic tumor microenvironment, is warranted.
  • 榎本 篤, 小林 大貴, 市原 亮介, 安藤 良太, 森 奈津美, 浅井 直也, 白木 之浩, 三井 伸二, 高橋 雅英
    日本病理学会会誌 110(1) 309-309 2021年3月  
  • Hiroki Kobayashi, Krystyna A Gieniec, Josephine A Wright, Tongtong Wang, Naoya Asai, Yasuyuki Mizutani, Tadashi Lida, Ryota Ando, Nobumi Suzuki, Tamsin R M Lannagan, Jia Q Ng, Akitoshi Hara, Yukihiro Shiraki, Shinji Mii, Mari Ichinose, Laura Vrbanac, Matthew J Lawrence, Tarik Sammour, Kay Uehara, Gareth Davies, Leszek Lisowski, Ian E Alexander, Yoku Hayakawa, Lisa M Butler, Andrew C W Zannettino, M Omar Din, Jeff Hasty, Alastair D Burt, Simon J Leedham, Anil K Rustgi, Siddhartha Mukherjee, Timothy C Wang, Atsushi Enomoto, Masahide Takahashi, Daniel L Worthley, Susan L Woods
    Gastroenterology 160(4) 1224-1239 2021年3月  
    BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs), key constituents of the tumor microenvironment, either promote or restrain tumor growth. Attempts to therapeutically target CAFs have been hampered by our incomplete understanding of these functionally heterogeneous cells. Key growth factors in the intestinal epithelial niche, bone morphogenetic proteins (BMPs), also play a critical role in colorectal cancer (CRC) progression. However, the crucial proteins regulating stromal BMP balance and the potential application of BMP signaling to manage CRC remain largely unexplored. METHODS: Using human CRC RNA expression data, we identified CAF-specific factors involved in BMP signaling, then verified and characterized their expression in the CRC stroma by in situ hybridization. CRC tumoroids and a mouse model of CRC hepatic metastasis were used to test approaches to modify BMP signaling and treat CRC. RESULTS: We identified Grem1 and Islr as CAF-specific genes involved in BMP signaling. Functionally, GREM1 and ISLR acted to inhibit and promote BMP signaling, respectively. Grem1 and Islr marked distinct fibroblast subpopulations and were differentially regulated by transforming growth factor β and FOXL1, providing an underlying mechanism to explain fibroblast biological dichotomy. In patients with CRC, high GREM1 and ISLR expression levels were associated with poor and favorable survival, respectively. A GREM1-neutralizing antibody or fibroblast Islr overexpression reduced CRC tumoroid growth and promoted Lgr5+ intestinal stem cell differentiation. Finally, adeno-associated virus 8 (AAV8)-mediated delivery of Islr to hepatocytes increased BMP signaling and improved survival in our mouse model of hepatic metastasis. CONCLUSIONS: Stromal BMP signaling predicts and modifies CRC progression and survival, and it can be therapeutically targeted by novel AAV-directed gene delivery to the liver.
  • Nobutaka Ohgami, Akira Iizuka, Hirokazu Hirai, Ichiro Yajima, Machiko Iida, Atsuyoshi Shimada, Toyonori Tsuzuki, Mayumi Jijiwa, Naoya Asai, Masahide Takahashi, Masashi Kato
    Journal of Biological Chemistry 296 100389-100389 2021年  
  • Tetsuro Taki, Yukihiro Shiraki, Atsushi Enomoto, Liang Weng, Chen Chen, Naoya Asai, Yoshiki Murakumo, Kohei Yokoi, Masahide Takahashi, Shinji Mii
    Cancer science 111(12) 4616-4628 2020年12月  
    Stromal invasion is considered an important prognostic factor in patients with lung adenocarcinoma. The mechanisms underlying the formation of tumor stroma and stromal invasion have been studied in the lung; however, they are still unclear. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein highly expressed in several types of human malignant tumors including lung cancers. In this study, we investigated the in vivo functions of CD109 protein in malignant lung tumors. Initially, we identified an association between higher expression of CD109 protein in human lung adenocarcinoma and a significantly worse prognosis, according to immunohistochemical analysis. We also showed that CD109 deficiency significantly reduced the area of stromal invasive lesions in a genetically engineered CD109-deficient lung adenocarcinoma mouse model, which correlated with the results observed in human lung adenocarcinoma. Furthermore, we identified latent TGF-β binding protein-1 (LTBP1) as a CD109-interacting protein using mass spectrometry and confirmed their interaction by co-immunoprecipitation. Importantly, increased CD109 expression enhanced stromal TGF-β activation in the presence of LTBP1. Therefore, these data suggest the significance of the regulation of TGF-β signaling through CD109 and LTBP1 interaction in tumor stroma and also reveal the importance of CD109 expression levels in promoting lung cancer cell proliferation, migration, and invasion, and thus predicting the outcome of patients suffering from lung adenocarcinoma. Therefore, CD109 protein could be a potential therapeutic target for this disease.
  • 前田 真男, 林 孝典, 西尾 永司, 浅井 直也, 藤井 多久磨, 下野 洋平
    日本癌学会総会記事 79回 PJ14-6 2020年10月  
  • 前田 真男, 林 孝典, 西尾 永司, 浅井 直也, 藤井 多久磨, 下野 洋平
    日本癌学会総会記事 79回 PJ14-6 2020年10月  
  • Yasuyuki Mizutani, Hiroki Kobayashi, Tadashi Iida, Naoya Asai, Atsushi Masamune, Akitoshi Hara, Nobutoshi Esaki, Kaori Ushida, Shinji Mii, Yukihiro Shiraki, Kenju Ando, Liang Weng, Seiichiro Ishihara, Suzanne M Ponik, Matthew W Conklin, Hisashi Haga, Arata Nagasaka, Takaki Miyata, Makoto Matsuyama, Tomoe Kobayashi, Tsutomu Fujii, Suguru Yamada, Junpei Yamaguchi, Tongtong Wang, Susan L Woods, Daniel Worthley, Teppei Shimamura, Mitsuhiro Fujishiro, Yoshiki Hirooka, Atsushi Enomoto, Masahide Takahashi
    Cancer research 79(20) 5367-5381 2019年10月15日  査読有り
    Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC). In situ hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg.
  • Akitoshi Hara, Hiroki Kobayashi, Naoya Asai, Shigeyoshi Saito, Takahiro Higuchi, Katsuhiro Kato, Takahiro Okumura, Yasuko K Bando, Mikito Takefuji, Yasuyuki Mizutani, Yuki Miyai, Shoji Saito, Shoichi Maruyama, Keiko Maeda, Noriyuki Ouchi, Arata Nagasaka, Takaki Miyata, Shinji Mii, Noriyuki Kioka, Daniel L Worthley, Toyoaki Murohara, Masahide Takahashi, Atsushi Enomoto
    Circulation research 125(4) 414-430 2019年8月2日  査読有り
    RATIONALE: Myofibroblasts have roles in tissue repair following damage associated with ischemia, aging, and inflammation and also promote fibrosis and tissue stiffening, causing organ dysfunction. One source of myofibroblasts is mesenchymal stromal/stem cells that exist as resident fibroblasts in multiple tissues. We previously identified meflin (mesenchymal stromal cell- and fibroblast-expressing Linx paralogue), a glycosylphosphatidylinositol-anchored membrane protein, as a specific marker of mesenchymal stromal/stem cells and a regulator of their undifferentiated state. The roles of meflin in the development of heart disease, however, have not been investigated. OBJECTIVE: We examined the expression of meflin in the heart and its involvement in cardiac repair after ischemia, fibrosis, and the development of heart failure. METHODS AND RESULTS: We found that meflin has an inhibitory role in myofibroblast differentiation of cultured mesenchymal stromal/stem cells. Meflin expression was downregulated by stimulation with TGF (transforming growth factor)-β, substrate stiffness, hypoxia, and aging. Histological analysis revealed that meflin-positive fibroblastic cells and their lineage cells proliferated in the hearts after acute myocardial infarction and pressure-overload heart failure mouse models. Analysis of meflin knockout mice revealed that meflin is essential for the increase in the number of cells that highly express type I collagen in the heart walls after myocardial infarction induction. When subjected to pressure overload by transverse aortic constriction, meflin knockout mice developed marked cardiac interstitial fibrosis with defective compensation mechanisms. Analysis with atomic force microscopy and hemodynamic catheterization revealed that meflin knockout mice developed stiff failing hearts with diastolic dysfunction. Mechanistically, we found that meflin interacts with bone morphogenetic protein 7, an antifibrotic cytokine that counteracts the action of TGF-β and augments its intracellular signaling. CONCLUSIONS: These data suggested that meflin is involved in cardiac tissue repair after injury and has an inhibitory role in myofibroblast differentiation of cardiac fibroblastic cells and the development of cardiac fibrosis.
  • Xiaoze Wang, Atsushi Enomoto, Liang Weng, Yasuyuki Mizutani, Shaniya Abudureyimu, Nobutoshi Esaki, Yuta Tsuyuki, Chen Chen, Shinji Mii, Naoya Asai, Hisashi Haga, Sumire Ishida, Kenji Yokota, Masashi Akiyama, Masahide Takahashi
    Cancer science 109(11) 3643-3656 2018年11月  査読有り
    Pathological observations show that cancer cells frequently invade the surrounding stroma in collective groups rather than through single cell migration. Here, we studied the role of the actin-binding protein Girdin, a specific regulator of collective migration of neuroblasts in the brain, in collective cancer cell migration. We found that Girdin was essential for the collective migration of the skin cancer cell line A431 on collagen gels as well as their fibroblast-led collective invasion in an organotypic culture model. We provide evidence that Girdin binds to β-catenin that plays important roles in the Wnt signaling pathway and in E-cadherin-mediated cell-cell adhesion. Girdin-depleted cells displayed scattering and impaired E-cadherin-specific cell-cell adhesion. Importantly, Girdin depletion led to impaired cytoskeletal association of the β-catenin complex, which was accompanied by changes in the supracellular actin cytoskeletal organization of cancer cell cohorts on collagen gels. Although the underlying mechanism is unclear, this observation is consistent with the established role of the actin cytoskeletal system and cell-cell adhesion in the collective behavior of cells. Finally, we showed the correlation of the expression of Girdin with that of the components of the E-cadherin complex and the differentiation of human skin cancer. Collectively, our results suggest that Girdin is an important modulator of the collective behavior of cancer cells.
  • 三井 伸二, 白木 之浩, 滝 哲郎, 榎本 篤, 浅井 直也, 高橋 雅英
    日本病理学会会誌 107(2) 120-120 2018年10月  
  • Shaniya Abudureyimu, Naoya Asai, Atsushi Enomoto, Liang Weng, Hiroki Kobayashi, Xiaoze Wang, Chen Chen, Shinji Mii, Masahide Takahashi
    Scientific reports 8(1) 7292-7292 2018年5月8日  査読有り
    Linx is a member of the leucine-rich repeat and immunoglobulin family of membrane proteins which has critical roles in the development of the peripheral nervous system and forebrain connectivity. A previous study showed that Linx is expressed in projection neurons in the cortex and in cells that comprise the passage to the prethalamus that form the internal capsule, indicating the involvement of Linx in axon guidance and cell-cell communication. In this study, we found that Linx-deficient mice develop severe hydrocephalus and die perinatally by unknown mechanisms. Importantly, mice heterozygous for the linx gene exhibited defects in the development of the anterior commissure in addition to hydrocephalus, indicating haploinsufficiency of the linx gene in forebrain development. In N1E-115 neuroblastoma cells and primary cultured hippocampal neurons, Linx depletion led to impaired neurite extension and an increase in cell body size. Consistent with this, but of unknown significance, we found that Linx interacts with and upregulates the activity of Rho-kinase, a modulator of many cellular processes including cytoskeletal organization. These data suggest a role for Linx in the regulation of complex forebrain connectivity, and future identification of its extracellular ligand(s) will help clarify this function.
  • 榎本 篤, 水谷 泰之, 浅井 直也, 高橋 雅英
    日本病理学会会誌 107(1) 187-187 2018年4月  
  • 白木 之浩, 三井 伸二, 浅井 直也, 榎本 篤, 高橋 雅英
    日本病理学会会誌 107(1) 380-380 2018年4月  
  • Liang Weng, Yi-Peng Han, Atsushi Enomoto, Yasuyuki Kitaura, Shushi Nagamori, Yoshikatsu Kanai, Naoya Asai, Jian An, Maki Takagishi, Masato Asai, Shinji Mii, Takashi Masuko, Yoshiharu Shimomura, Masahide Takahashi
    PLoS biology 16(3) e2005090 2018年3月  査読有り
    Amino acid signaling mediated by the activation of mechanistic target of rapamycin complex 1 (mTORC1) is fundamental to cell growth and metabolism. However, how cells negatively regulate amino acid signaling remains largely unknown. Here, we show that interaction between 4F2 heavy chain (4F2hc), a subunit of multiple amino acid transporters, and the multifunctional hub protein girders of actin filaments (Girdin) down-regulates mTORC1 activity. 4F2hc interacts with Girdin in mitogen-activated protein kinase (MAPK)- and amino acid signaling-dependent manners to translocate to the lysosome. The resultant decrease in cell surface 4F2hc leads to lowered cytoplasmic glutamine (Gln) and leucine (Leu) content, which down-regulates amino acid signaling. Consistently, Girdin depletion augments amino acid-induced mTORC1 activation and inhibits amino acid deprivation-induced autophagy. These findings uncovered the mechanism underlying negative regulation of amino acid signaling, which may play a role in tightly regulated cell growth and metabolism.
  • 白木 之浩, 三井 伸二, 浅井 直也, 榎本 篤, 百田 洋之, 夏目 敦至, 若林 俊彦, 高橋 雅英
    日本癌学会総会記事 76回 P-3324 2017年9月  
  • Masaki Sunagawa, Shinji Mii, Atsushi Enomoto, Takuya Kato, Yoshiki Murakumo, Yukihiro Shiraki, Naoya Asai, Masato Asai, Masato Nagino, Masahide Takahashi
    Oncotarget 7(50) 82836-82850 2016年12月13日  査読有り
    CD109 is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed in several types of human cancers, particularly squamous cell carcinomas. We previously reported that CD109-deficient mice exhibit epidermal hyperplasia and chronic skin inflammation. Although we found that CD109 regulates differentiation of keratinocytes in vivo, the function of CD109 in tumorigenesis remains unknown. In this study, we investigated the role of CD109 in skin tumorigenesis using a two-stage carcinogenesis model in CD109-deficient mice with chronic skin inflammation. Immunohistochemical analysis revealed a higher level of TGF-β protein expression in the dermis of CD109-deficient mice than in that of wild-type mice. Additionally, immunofluorescence analysis showed that Smad2 phosphorylation and Nrf2 expression were enhanced in primary keratinocytes from CD109-deficient mice compared with in those from wild-type mice. Although no significant difference was found in conversion rates from papilloma to carcinoma between wild-type and CD109-deficient mice in the carcinogenesis model, we observed fewer and smaller papillomas in CD109-deficient mice than in wild-type mice. Apoptosis and DNA damage marker levels were significantly reduced in CD109-deficient skin compared with in wild-type skin at 24 h after 7, 12-dimethylbenz (α) anthracene treatment. Furthermore, mutation-specific PCR revealed that the mutation frequency of the H-ras gene was less in CD109-deficient skin than in wild-type skin in this model. These results suggest that CD109 deficiency suppresses skin tumorigenesis by enhancing TGF-β/Smad/Nrf2 pathway activity and decreasing the mutation frequency of the H-ras gene.
  • 白木 之浩, 砂川 真輝, 三井 伸二, 浅井 直也, 榎本 篤, 百田 洋之, 夏目 敦至, 若林 俊彦, 高橋 雅英
    日本癌学会総会記事 75回 P-2260 2016年10月  
  • 榎本 篤, 翁 良, 韓 一梵, 浅井 直也, 三井 伸二, 高橋 雅英
    日本病理学会会誌 105(2) 100-100 2016年9月  
  • 白木 之浩, 加藤 琢哉, 砂川 真輝, 三井 伸二, 浅井 直也, 榎本 篤, 百田 洋之, 夏目 敦至, 若林 俊彦, 高橋 雅英
    日本病理学会会誌 105(1) 470-470 2016年4月  
  • 三井 伸二, 白木 之浩, 下山 芳江, 榎本 篤, 浅井 直也, 高橋 雅英
    日本病理学会会誌 105(1) 539-539 2016年4月  
  • 榎本 篤, 前田 啓子, 浅井 直也, 三井 伸二, 高橋 雅英
    日本病理学会会誌 105(1) 542-542 2016年4月  
  • Xiaoze Wang, Atsushi Enomoto, Naoya Asai, Takuya Kato, Masahide Takahashi
    Pathology international 66(4) 183-92 2016年4月  査読有り
    Clinical pathologists have long been aware that in many types of human malignant tumors, the cells are often connected and form groups of various sizes or "nests". In this way, they achieve "collective invasion" into the surrounding stroma, rather than spreading out individually. Such collective behavior is also a common feature of migration during embryonic and postnatal developmental stages, suggesting there are advantages gained by collective cell migration in the organisms. Recent studies have revealed the mechanisms underlying the collective invasion of cancer cells. These mechanisms differ from those observed in the migration of single cells in culture, including reliance on the epithelial-mesenchymal transition program. Whereas intercellular adhesion appears to be coordinated, cancer cell groups can be heterogenous, including cells that are leaders and those that are followers. There is also interaction with the tumor microenvironment that is a prerequisite for collective invasion of cancer. In this review, we describe recently emerging mechanisms underlying the collective migration of cells, with a particular focus in our studies on the actin-binding protein Girdin/GIV and the transcriptional regulator tripartite motif containing 27. These studies provide new perspectives on the mechanistic analogy between cancer and development.
  • Atsushi Enomoto, Takuya Kato, Naoya Asai, Masahide Takahashi
    Nihon rinsho. Japanese journal of clinical medicine 74(3) 523-32 2016年3月  査読有り
    In embryonal development and pathogenesis of diseases, cells often get connected and form small groups to undergo "collective migration", rather than spread out individually. The examples include the migration of neural crest cells and neuroblasts during development and the invasion of cancers in surrounding stroma, indicating the importance and significance of collective behavior of cells in the body. Recent studies have revealed the mechanisms for collective cell migration, which had seemed not to be the subject of traditional cell biology on single cells in culture. The heterogeneity in cell groups is also a key in understanding the mechanisms for collective cell migration. In this article, we describe recently emerging mechanisms for collective cell migration, with a particular focus on our studies on the actin-binding protein Girdin and tripartite motif containing 27.
  • Hosne Ara, Maki Takagishi, Atsushi Enomoto, Masato Asai, Kaori Ushida, Naoya Asai, Yoshie Shimoyama, Kozo Kaibuchi, Yasuhiro Kodera, Masahide Takahashi
    Cancer science 107(2) 133-9 2016年2月  査読有り
    In gastric cancer, the non-canonical Wnt signaling pathway is activated by Wnt5a, which has a critical role in disease outcome. Previous studies have shown that Wnt5a mediates the expression of the extracellular matrix protein laminin γ2 through Rac and JNK activation to promote gastric cancer progression. However, the mechanism of this regulatory pathway has not been completely addressed. The scaffold protein Dvl is a major component of the Wnt signaling pathway. Here, we show that Dvl-associating protein with a high frequency of leucine residues (Daple) mediates Wnt5a-induced laminin γ2 expression. Immunohistochemical analysis showed marked expression of Daple in advanced clinical stages of gastric cancer, where it highly correlated with Wnt5a/b and laminin γ2 expression, the depth of wall invasion, and the frequency of lymph node metastasis. In cultured cancer cells, Daple depletion led to the suppression of Wnt5a-induced Rac and JNK activation, laminin γ2 expression, and cell migration and invasion. Accordingly, Daple depletion also suppressed liver metastasis in a mouse xenograft model of gastric cancer. These results suggest that the non-canonical Wnt signaling pathway contributes to gastric cancer progression at least in part via Daple, which provides a new therapeutic opportunity for the treatment of the disease.
  • Nozomu Kawashima, Hideki Muramatsu, Yusuke Okuno, Yuka Torii, Jun-ichi Kawada, Atsushi Narita, Koji Nakanishi, Asahito Hama, Aya Kitamura, Naoya Asai, Shigeo Nakamura, Yoshiyuki Takahashi, Yoshinori Ito, Seiji Kojima
    Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy 21(12) 857-63 2015年12月  査読有り
    BACKGROUND: Viral infection is one of the major causes of mortality in patients undergoing hematopoietic stem cell transplant (HSCT). Systemic infection of adenovirus (AdV) has emerged as a not uncommon viral infection with significant morbidity and mortality as with cytomegalovirus and Epstein-Barr virus infection. Routine surveillance for these viruses has become a clinical practice and subsequent preemptive therapy improves patients' outcomes; however, the effectiveness of preemptive therapy for AdV has not been fully investigated in patients with a lethal form of AdV infection. METHODS: Sequential AdV loads were retrospectively analyzed in children with fulminant AdV hepatitis after HSCT. RESULTS: The AdV DNA became detectable (1 × 10(4) copies/mL) as early as 2 weeks after HSCT. These levels reached >1 × 10(8) copies/mL at the onset of fulminant hepatitis. However, we determined that γ-glutamyltransferase levels were elevated to >100 IU/L at least 2 weeks before the diagnosis of hepatitis. CONCLUSIONS: Our observation raises the possibility that elevated γ-glutamyltransferase could be a sentinel marker for AdV hepatitis, which prompts elaborated monitoring of AdV load and targeted treatment.
  • Shinji Hayano, Mikito Takefuji, Kengo Maeda, Tomonori Noda, Hitoshi Ichimiya, Koichi Kobayashi, Atsushi Enomoto, Naoya Asai, Masahide Takahashi, Toyoaki Murohara
    Journal of molecular and cellular cardiology 88 55-63 2015年11月  査読有り
    Myocardial infarction is a leading cause of death, and cardiac rupture following myocardial infarction leads to extremely poor prognostic feature. A large body of evidence suggests that Akt is involved in several cardiac diseases. We previously reported that Akt-mediated Girdin phosphorylation is essential for angiogenesis and neointima formation. The role of Girdin expression and phosphorylation in myocardial infarction, however, is not understood. Therefore, we employed Girdin-deficient mice and Girdin S1416A knock-in (Girdin(SA/SA)) mice, replacing the Akt phosphorylation site with alanine, to address this question. We found that Girdin was expressed and phosphorylated in cardiac fibroblasts in vitro and that its phosphorylation was crucial for the proliferation and migration of cardiac fibroblasts. In vivo, Girdin was localized in non-cardiomyocyte interstitial cells and phosphorylated in α-smooth muscle actin-positive cells, which are likely to be cardiac myofibroblasts. In an acute myocardial infarction model, Girdin(SA/SA) suppressed the accumulation and proliferation of cardiac myofibroblasts in the infarcted area. Furthermore, lower collagen deposition in Girdin(SA/SA) mice impaired cardiac repair and resulted in increased mortality attributed to cardiac rupture. These findings suggest an important role of Girdin phosphorylation at serine 1416 in cardiac repair after acute myocardial infarction and provide insights into the complex mechanism of cardiac rupture through the Akt/Girdin-mediated regulation of cardiac myofibroblasts.
  • 白木 之浩, 加藤 琢哉, 砂川 真輝, 三井 伸二, 浅井 直也, 百田 洋之, 高橋 雅英
    日本癌学会総会記事 74回 P-1053 2015年10月  
  • Aya Muramatsu, Atsushi Enomoto, Takuya Kato, Liang Weng, Keisuke Kuroda, Naoya Asai, Masato Asai, Shinji Mii, Masahide Takahashi
    Biochemical and biophysical research communications 463(4) 999-1005 2015年8月7日  査読有り
    Girdin is an actin-binding protein that has multiple functions in postnatal neural development and cancer progression. We previously showed that Girdin is a regulator of migration for neuroblasts born from neural stem cells in the subventricular zone (SVZ) and the dentate gyrus of the hippocampus in the postnatal brain. Despite a growing list of Girdin-interacting proteins, the mechanism of Girdin-mediated migration has not been fully elucidated. Girdin interacts with Disrupted-In-Schizophrenia 1 and partitioning-defective 3, both of which have been shown to interact with the kinesin microtubule motor proteins. Based on this, we have identified that Girdin also interacts with kinesin-1, a member of neuronal kinesin proteins. Although a direct interaction of Girdin and kinesin-1 has not been determined, it is of interest to find that Girdin loss-of-function mutant mice with the mutation of a basic amino acid residue-rich region (Basic mut mice) exhibit limited interaction with kinesin-1. Furthermore, expression of a kinesin-1 mutant with motor defects, leads to Girdin mislocalization. Finally, consistent with previous studies on the role of kinesin proteins in trafficking a cell-cell adhesion molecule N-cadherin, Basic mut mice showed an aberrant expression pattern of N-cadherin in migrating SVZ neuroblasts. These findings suggest a potential role of Girdin/kinesin-1 interaction in the regulation of neuroblast migration in the postnatal brain.
  • Tomonori Noda, Kengo Maeda, Shinji Hayano, Naoya Asai, Atsushi Enomoto, Masahide Takahashi, Toyoaki Murohara
    Arteriosclerosis, thrombosis, and vascular biology 35(5) 1246-53 2015年5月  査読有り
    OBJECTIVE: The accumulation of unfolded protein in the endoplasmic reticulum (ER) initiates an adaptive stress response, termed the unfolded protein response. Previous studies suggested that ER stress might be involved in the formation of neointima after vascular injury. We recently discovered a novel regulator of ER stress, 78-kDa glucose-regulated protein-interacting protein induced by ER stress (Gipie). The objective of this study was to elucidate the role of Gipie using models of vascular disease. APPROACH AND RESULTS: We investigated the functions of Gipie in cultured vascular smooth muscle cells (VSMCs) and in a vascular injury model of a rat carotid artery. The expression of Gipie was predominantly detected in synthetic VSMCs and to a much lesser extent in contractile VSMCs, which was augmented by treatment with thapsigargin. Gipie knockdown increased the phosphorylation levels of c-Jun N-terminal kinase and the number of apoptotic cells under ER stress. Moreover, Gipie knockdown decreased the mature form of collagen I in synthetic VSMCs. The expression of Gipie was rarely detected in the medial VSMCs of the intact carotid artery, whereas it was detected in most of the neointimal cells and some of the medial VSMCs after balloon injury. Depletion of Gipie in the rat carotid artery attenuated the neointimal thickening, which was accompanied by increased cell death in the neointima. Conversely, overexpression of Gipie augmented the neointimal thickening. CONCLUSIONS: Gipie participates in the ER stress response in VSMCs and plays an important role in neointima formation after vascular injury.

MISC

 89
  • Kaori Ushida, Naoya Asai, Kozo Uchiyama, Atsushi Enomoto, Masahide Takahashi
    Pathology international 68(4) 241-245 2018年4月  査読有り
    Embedding of tissue samples that maintains a desired orientation is critical for preparing sections suitable for diagnosis and study objectives. Methods to prepare tissue sections include: (i) paraffin embedding or snap-freezing followed by microtome or cryostat sectioning; and (ii) agarose embedding followed by cutting on a vibrating microslicer. Although these methods are useful for routine laboratory work, preparation of small and fragile tissues such as mouse organs, small human biopsy samples, and cultured floating spheres is difficult and requires special skills. In particular, tissue specimen orientation can be lost during embedding in molds and subsequent sectioning. Here, we developed a method using low melting temperature (LM) gelatin either alone or mixed with agarose to preliminarily embed collected tissues that are either prefixed or unfixed, followed by conventional fixation, paraffin embedding, freezing, and sectioning. The advantage of the method is that the LM gelatin and its mixture with agarose can be handled at room temperature but quickly hardens at 4°C, which allows embedding, trimming, and arranging of small and fragile tissues in a desired orientation and are compatible with traditional stainings. Thus, this method can have various laboratory applications and can be modified according to the needs of each laboratory.
  • Shiraki Yukihiro, Mii Shinji, Asai Naoya, Enomoto Atsushi, Momota Hiroyuki, Natsume Atsushi, Wakabayashi Toshihiko, Takahashi Masahide
    CANCER SCIENCE 109 1130-1130-1130 2018年1月  
  • Yukihiro Shiraki, Shinji Mii, Atsushi Enomoto, Hiroyuki Momota, Yi-Peng Han, Takuya Kato, Kaori Ushida, Akira Kato, Naoya Asai, Yoshiki Murakumo, Kosuke Aoki, Hiromichi Suzuki, Fumiharu Ohka, Toshihiko Wakabayashi, Tomoki Todo, Seishi Ogawa, Atsushi Natsume, Masahide Takahashi
    The Journal of pathology 243(4) 468-480 2017年12月  査読有り
    In the progression of glioma, tumour cells often exploit the perivascular microenvironment to promote their survival and resistance to conventional therapies. Some of these cells are considered to be brain tumour stem cells (BTSCs); however, the molecular nature of perivascular tumour cells has not been specifically clarified because of the complexity of glioma. Here, we identified CD109, a glycosylphosphatidylinositol-anchored protein and regulator of multiple signalling pathways, as a critical regulator of the progression of lower-grade glioma (World Health Organization grade II/III) by clinicopathological and whole-genome sequencing analysis of tissues from human glioma. The importance of CD109-positive perivascular tumour cells was confirmed not only in human lower-grade glioma tissues but also in a mouse model that recapitulated human glioma. Intriguingly, BTSCs isolated from mouse glioma expressed high levels of CD109. CD109-positive BTSCs exerted a proliferative effect on differentiated glioma cells treated with temozolomide. These data reveal the significance of tumour cells that populate perivascular regions during glioma progression, and indicate that CD109 is a potential therapeutic target for the disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
  • Maki Takagishi, Masato Sawada, Shinya Ohata, Naoya Asai, Atsushi Enomoto, Kunihiko Takahashi, Liang Weng, Kaori Ushida, Hosne Ara, Shigeyuki Matsui, Kozo Kaibuchi, Kazunobu Sawamoto, Masahide Takahashi
    Cell reports 20(4) 960-972 2017年7月25日  査読有り
    Motile cilia in ependymal cells, which line the cerebral ventricles, exhibit a coordinated beating motion that drives directional cerebrospinal fluid (CSF) flow and guides neuroblast migration. At the apical cortex of these multi-ciliated cells, asymmetric localization of planar cell polarity (PCP) proteins is required for the planar polarization of microtubule dynamics, which coordinates cilia orientation. Daple is a disheveled-associating protein that controls the non-canonical Wnt signaling pathway and cell motility. Here, we show that Daple-deficient mice present hydrocephalus and their ependymal cilia lack coordinated orientation. Daple regulates microtubule dynamics at the anterior side of ependymal cells, which in turn orients the cilial basal bodies required for the directional cerebrospinal fluid flow. These results demonstrate an important role for Daple in planar polarity in motile cilia and provide a framework for understanding the mechanisms and functions of planar polarization in the ependymal cells.
  • Daisuke Kuga, Kaori Ushida, Shinji Mii, Atsushi Enomoto, Naoya Asai, Masato Nagino, Masahide Takahashi, Masato Asai
    The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 65(6) 347-366 2017年6月  査読有り
    Tuft cells (TCs) are minor components of gastrointestinal epithelia, characterized by apical tufts and spool-shaped somas. The lack of reliable TC-markers has hindered the elucidation of its role. We developed site-specific and phosphorylation-status-specific antibodies against Girdin at tyrosine-1798 (pY1798) and found pY1798 immunostaining of mouse jejunum clearly depicted epithelial cells closely resembling TCs. This study aimed to validate pY1798 as a TC-marker. Double-fluorescence staining of intestines was performed with pY1798 and known TC-markers, for example, hematopoietic-prostaglandin-D-synthase (HPGDS), or doublecortin-like kinase 1 (DCLK1). Odds ratios (ORs) were calculated from cell counts to determine whether two markers were attracting (OR<1) or repelling (OR>1). In consequence, pY1798 signals strongly attracted those of known TC-markers. ORs for HPGDS in mouse stomach, small intestine, and colon were 0 for all, and 0.08 for DCLK1 in human small intestine. pY1798-positive cells in jejunum were distinct from other minor epithelial cells, including goblet, Paneth, and neuroendocrine cells. Thus, pY1798 was validated as a TC-marker. Interestingly, apoptosis inducers significantly increased relative TC frequencies despite the absence of proliferation at baseline. In conclusion, pY1798 is a novel TC-marker. Selective tyrosine phosphorylation and possible resistance to apoptosis inducers implied the activation of certain kinase(s) in TCs, which may become a clue to elucidate the enigmatic roles of TCs. .

書籍等出版物

 1

共同研究・競争的資金等の研究課題

 22