研究者業績

佐藤 貴彦

サトウ タカヒコ  (Takahiko Sato)

基本情報

所属
藤田医科大学 国際再生医療センター 准教授
学位
博士(医学)(京都大学)

研究者番号
30570775
ORCID ID
 https://orcid.org/0000-0003-3836-7978
J-GLOBAL ID
201101027211272661
researchmap会員ID
6000028643

京都大学アメリカンフットボール部Gangsters出身。それが縁で京都大学再生医科学研究所の笹井芳樹教授に拾ってもらい、理化学研究所CDBにて発生学研究に没頭。2006年京都大学大学院医学研究科博士課程修了(医学博士)。骨格筋発生を学ぶ為、Institut PasteurのMargaret Buckingham研究室に留学し、マウス骨格筋発生研究の薫陶を受ける。帰国後から筋再生の研究をスタートし、ヒト骨格筋発生・再生研究を行う。まずは自分の身体を用いて筋再生、筋肥大の実験に勤しむ。


論文

 30
  • Yurika Ito, Mari Yamagata, Takuya Yamamoto, Katsuya Hirasaka, Takeshi Nikawa, Takahiko Sato
    eLife 12 2023年12月15日  
    Skeletal muscle atrophy and the inhibition of muscle regeneration are known to occur as a natural consequence of aging, yet the underlying mechanisms that lead to these processes in atrophic myofibers remain largely unclear. Our research has revealed that the maintenance of proper mitochondrial-associated endoplasmic reticulum membranes (MAM) is vital for preventing skeletal muscle atrophy in microgravity environments. We discovered that the deletion of the mitochondrial fusion protein Mitofusin2 (MFN2), which serves as a tether for MAM, in human induced pluripotent stem (iPS) cells or the reduction of MAM in differentiated myotubes caused by microgravity interfered with myogenic differentiation process and an increased susceptibility to muscle atrophy, as well as the activation of the Notch signaling pathway. The atrophic phenotype of differentiated myotubes in microgravity and the regenerative capacity of Mfn2-deficient muscle stem cells in dystrophic mice were both ameliorated by treatment with the gamma-secretase inhibitor DAPT. Our findings demonstrate how the orchestration of mitochondrial morphology in differentiated myotubes and regenerating muscle stem cells plays a crucial role in regulating Notch signaling through the interaction of MAM.
  • Takahiko Sato, Yukito Yamanaka, Morio Ueno, Chie Sotozono
    Methods in Molecular Biology 13-19 2023年3月31日  筆頭著者責任著者
  • Aika Sawada, Takuya Yamamoto, Takahiko Sato
    International journal of molecular sciences 23(4) 2022年2月12日  
    The proliferation and differentiation of skeletal muscle cells are usually controlled by serum components. Myogenic differentiation is induced by a reduction of serum components in vitro. It has been recently reported that serum contains not only various growth factors with specific actions on the proliferation and differentiation of myogenic cells, but also exogenous exosomes, the function of which is poorly understood in myogenesis. We have found that exosomes in fetal bovine serum are capable of exerting an inhibitive effect on the differentiation of C2C12 myogenic cells in vitro. In this process of inhibition, the downregulation of Tceal5 and Tceal7 genes was observed. Expression of these genes is specifically increased in direct proportion to myogenic differentiation. Loss- or gain- of function studies with Tceal5 and Tceal7 indicated that they have the potential to regulate myogenic differentiation via exosomes in fetal bovine serum.
  • Nana Takenaka-Ninagawa, Jinsol Kim, Mingming Zhao, Masae Sato, Tatsuya Jonouchi, Megumi Goto, Clémence Kiho Bourgeois Yoshioka, Rukia Ikeda, Aya Harada, Takahiko Sato, Makoto Ikeya, Akiyoshi Uezumi, Masashi Nakatani, Satoru Noguchi, Hidetoshi Sakurai
    Stem Cell Research & Therapy 12(1) 2021年12月  
    <title>Abstract</title><sec> <title>Background</title> Mesenchymal stromal cells (MSCs) function as supportive cells on skeletal muscle homeostasis through several secretory factors including type 6 collagen (COL6). Several mutations of <italic>COL6A1</italic>, <italic>2</italic>, and <italic>3</italic> genes cause Ullrich congenital muscular dystrophy (UCMD). Skeletal muscle regeneration deficiency has been reported as a characteristic phenotype in muscle biopsy samples of human UCMD patients and UCMD model mice. However, little is known about the COL6-dependent mechanism for the occurrence and progression of the deficiency. The purpose of this study was to clarify the pathological mechanism of UCMD by supplementing COL6 through cell transplantation. </sec><sec> <title>Methods</title> To test whether COL6 supplementation has a therapeutic effect for UCMD, in vivo and in vitro experiments were conducted using four types of MSCs: (1) healthy donors derived-primary MSCs (pMSCs), (2) MSCs derived from healthy donor induced pluripotent stem cell (iMSCs), (3) COL6-knockout iMSCs (COL6KO-iMSCs), and (4) UCMD patient-derived iMSCs (UCMD-iMSCs). </sec><sec> <title>Results</title> All four MSC types could engraft for at least 12 weeks when transplanted into the tibialis anterior muscles of immunodeficient UCMD model (<italic>Col6a1</italic>KO) mice. COL6 protein was restored by the MSC transplantation if the MSCs were not COL6-deficient (types 1 and 2). Moreover, muscle regeneration and maturation in <italic>Col6a1</italic>KO mice were promoted with the transplantation of the COL6-producing MSCs only in the region supplemented with COL6. Skeletal muscle satellite cells derived from UCMD model mice (<italic>Col6a1</italic>KO-MuSCs) co-cultured with type 1 or 2 MSCs showed improved proliferation, differentiation, and maturation, whereas those co-cultured with type 3 or 4 MSCs did not. </sec><sec> <title>Conclusions</title> These findings indicate that COL6 supplementation improves muscle regeneration and maturation in UCMD model mice. </sec>
  • 竹中 菜々, Kim Jin Sol, 趙 明明, 佐藤 優江, 城之内 達也, 後藤 萌, 吉岡クレモンス 紀穂, 池田 留輝愛, 池谷 真, 上住 聡芳, 佐藤 貴彦, 野口 悟, 櫻井 英俊
    日本筋学会学術集会プログラム・抄録集 6回 69-69 2020年12月  
  • Takahiko Sato
    Journal of Neuromuscular Diseases 7(4) 395-405 2020年9月18日  
    Induced pluripotent stem cells (iPSCs) have the potential to differentiate into various types of cells and tissues including skeletal muscle. The approach to convert these stem cells into skeletal muscle cells offers hope for patients afflicted with skeletal muscle diseases such as Duchenne muscular dystrophy (DMD). Several methods have been reported to induce myogenic differentiation with iPSCs derived from myogenic patients. An important point for generating skeletal muscle cells from iPSCs is to understand in vivo myogenic induction in development and regeneration. Current protocols of myogenic induction utilize techniques with overexpression of myogenic transcription factors such as Myod1(MyoD), Pax3, Pax7, and others, using recombinant proteins or small molecules to induce mesodermal cells followed by myogenic progenitors, and adult muscle stem cells. This review summarizes the current approaches used for myogenic induction and highlights recent improvements.
  • Mingming Zhao, Atsutoshi Tazumi, Satoru Takayama, Nana Takenaka-Ninagawa, Minas Nalbandian, Miki Nagai, Yumi Nakamura, Masanori Nakasa, Akira Watanabe, Makoto Ikeya, Akitsu Hotta, Yuta Ito, Takahiko Sato, Hidetoshi Sakurai
    Stem cell reports 15(1) 80-94 2020年7月14日  査読有り
    Duchenne muscular dystrophy (DMD) is a progressive and fatal muscle-wasting disease caused by DYSTROPHIN deficiency. Cell therapy using muscle stem cells (MuSCs) is a potential cure. Here, we report a differentiation method to generate fetal MuSCs from human induced pluripotent stem cells (iPSCs) by monitoring MYF5 expression. Gene expression profiling indicated that MYF5-positive cells in the late stage of differentiation have fetal MuSC characteristics, while MYF5-positive cells in the early stage of differentiation have early myogenic progenitor characteristics. Moreover, late-stage MYF5-positive cells demonstrated good muscle regeneration potential and produced DYSTROPHIN in vivo after transplantation into DMD model mice, resulting in muscle function recovery. The engrafted cells also generated PAX7-positive MuSC-like cells under the basal lamina of DYSTROPHIN-positive fibers. These findings suggest that MYF5-positive fetal MuSCs induced in the late stage of iPSC differentiation have cell therapy potential for DMD.
  • Hiroshi Sakai, Takahiko Sato, Motoi Kanagawa, So-ichiro Fukada, Yuuki Imai
    Experimental Results 1 2020年  査読有り
    <title>Abstract</title> The anabolic effects of androgen on skeletal muscles are thought to be mediated by androgen receptor (AR). Although multiple studies concerning the effects of AR in males have been performed, the molecular mechanisms of AR in skeletal muscles remain unclear. Here we first confirmed that satellite cells from mouse hindlimb muscles express AR. We then generated satellite cell-specific AR knockout mice using <italic>Pax7CreERT2</italic> and <italic>ARL2/Y</italic> mice to test whether AR in satellite cells is necessary for muscle regeneration. Surprisingly, we found that muscle regeneration was compromised in both <italic>Pax7CreERT2(Fan)/+</italic> control mice and <italic>Pax7CreERT2(Fan)/+;ARL2/Y</italic> mice compared to <italic>ARL2/Y</italic> mice. However, <italic>Pax7CreERT2(Gaka)/+;ARL2/Y;R26tdTomato/+</italic> mice showed no significant differences between control and mutant muscle regeneration. These findings indicate that AR in satellite cells is not essential for muscle regeneration. We propose that <italic>Pax7CreERT2(Fan)/+</italic> control mice should be included in all experiments, because these mice negatively affect the muscle regeneration and show the mild regeneration phenotype.
  • Takahiko Sato, Koki Higashioka, Hidetoshi Sakurai, Takuya Yamamoto, Naoki Goshima, Morio Ueno, Chie Sotozono
    Stem cell reports 13(2) 352-365 2019年8月13日  査読有り
    The use of adult skeletal muscle stem cells (MuSCs) for cell therapy has been attempted for decades, but still encounters considerable difficulties. MuSCs derived from human induced pluripotent stem cells (hiPSCs) are promising candidates for stem cell therapy to treat Duchenne muscular dystrophy (DMD). Here we report that four transcription factors, HEYL, KLF4, MYOD, and PAX3, selected by comprehensive screening of different MuSC populations, enhance the derivation of PAX3-positive myogenic progenitors from fibroblasts and hiPSCs, using medium that promotes the formation of presomitic mesoderm. These induced PAX3-positive cells contribute efficiently to the repair of DMD-damaged myofibers and also reconstitute the MuSC population. These studies demonstrate how a combination of core transcription factors can fine-tune the derivation of MuSCs capable of contributing to the repair of adult skeletal muscle.
  • Yukito Yamanaka, Nana Takenaka, Hidetoshi Sakurai, Morio Ueno, Shigeru Kinoshita, Chie Sotozono, Takahiko Sato
    International journal of molecular sciences 20(14) 3456 2019年7月14日  査読有り
    Skeletal muscle stem cells (MuSCs) have been proposed as suitable candidates for cell therapy in muscular disorders since they exhibit good capacity for myogenic regeneration. However, for better therapeutic outcomes, it is necessary to isolate human MuSCs from a suitable tissue source with high myogenic differentiation. In this context, we isolated CD56+CD82+ cells from the extra eyelid tissue of young and aged patients, and tested in vitro myogenic differentiation potential. In the current study, myogenic cells derived from extra eyelid tissue were characterized and compared with immortalized human myogenic cells. We found that myogenic cells derived from extra eyelid tissue proliferated and differentiated myofibers in vitro, and restored DYSTROPHIN or PAX7 expression after transplantation with these cells in mice with Duchenne muscular dystrophy. Thus, human myogenic cells derived from extra eyelid tissue including the orbicularis oculi might be good candidates for stem cell-based therapies for treating muscular diseases.
  • Yu-Taro Noguchi, Miki Nakamura, Nobumasa Hino, Jumpei Nogami, Sayaka Tsuji, Takahiko Sato, Lidan Zhang, Kazutake Tsujikawa, Toru Tanaka, Kohei Izawa, Yoshiaki Okada, Takefumi Doi, Hiroki Kokubo, Akihito Harada, Akiyoshi Uezumi, Manfred Gessler, Yasuyuki Ohkawa, So-Ichiro Fukada
    Development (Cambridge, England) 146(4) dev163618 2019年2月20日  査読有り
    The undifferentiated state of muscle stem (satellite) cells (MuSCs) is maintained by the canonical Notch pathway. Although three bHLH transcriptional factors, Hey1, HeyL and Hes1, are considered to be potential effectors of the Notch pathway exerting anti-myogenic effects, neither HeyL nor Hes1 inhibits myogenic differentiation of myogenic cell lines. Furthermore, whether these factors work redundantly or cooperatively is unknown. Here, we showed cell-autonomous functions of Hey1 and HeyL in MuSCs using conditional and genetic null mice. Analysis of cultured MuSCs revealed anti-myogenic activity of both HeyL and Hes1. We found that HeyL forms heterodimeric complexes with Hes1 in living cells. Moreover, our ChIP-seq experiments demonstrated that, compared with HeyL alone, the HeyL-Hes1 heterodimer binds with high affinity to specific sites in the chromatin, including the binding sites of Hey1. Finally, analyses of myogenin promoter activity showed that HeyL and Hes1 act synergistically to suppress myogenic differentiation. Collectively, these results suggest that HeyL and Hey1 function redundantly in MuSCs, and that HeyL requires Hes1 for effective DNA binding and biological activity.
  • Okumura N, Hayashi R, Nakano M, Yoshii K, Tashiro K, Sato T, Blake DJ, Aleff R, Butz M, Highsmith EW, Wieben ED, Fautsch MP, Baratz KH, Komori Y, Nakahara M, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Koizumi N
    Investigative & Ophthalmology & Visual Science 60(2) 779-786 2019年2月  査読有り
  • Hiroshi Sakai, Sumiaki Fukuda, Miki Nakamura, Akiyoshi Uezumi, Yu-taro Noguchi, Takahiko Sato, Mitsuhiro Morita, Harumoto Yamada, Kunihiro Tsuchida, Shahragim Tajbakhsh, So-ichiro Fukada
    PLOS ONE 12(5) e0177516 2017年5月  査読有り
    Myogenic stem cells are a promising avenue for the treatment of muscular disorders. Freshly isolated muscle stem cells have a remarkable engraftment ability in vivo, but their cell number is limited. Current conventional culture conditions do not allow muscle stem cells to expand in vitro with their bona fide engraftment efficiency, requiring the improvement of culture procedures for achieving successful cell-therapy for muscle disorders. Here we expanded mouse muscle stem cells and human myoblasts with Notch ligands, DLL1, DLL4, and JAG1 to activate Notch signaling in vitro and to investigate whether these cells could retain their engraftment efficiency. Notch signaling promotes the expansion of Pax7+MyoD-mouse muscle stem-like cells and inhibits differentiation even after passage in vitro. Treatment with Notch ligands induced the Notch target genes and generated PAX7+MYOD-stem-like cells from human myoblasts previously cultured on conventional culture plates. However, cells treated with Notch ligands exhibit a stem cell-like state in culture, yet their regenerative ability was less than that of freshly isolated cells in vivo and was comparable to that of the control. These unexpected findings suggest that artificial maintenance of Notch signaling alone is insufficient for improving regenerative capacity of mouse and human donor-muscle cells and suggest that combinatorial events are critical to achieve muscle stem cell and myoblast engraftment potential.
  • Koki Higashioka, Noriko Koizumi, Hidetoshi Sakurai, Chie Sotozono, Takahiko Sato
    Stem Cells International 2017 2017年  査読有り
    It is well known that myogenic regulatory factors encoded by the Myod1 family of genes have pivotal roles in myogenesis, with partially overlapping functions, as demonstrated for the mouse embryo. Myogenin-mutant mice, however, exhibit severe myogenic defects without compensation by other myogenic factors. MYOGENIN might be expected to have an analogous function in human myogenic cells. To verify this hypothesis, we generated MYOGENIN-mutated human iPS cells by using CRISPR/Cas9 genome-editing technology. Our results suggest that MYOD1-independent or MYOD1-dependent mechanisms can compensate for the loss of MYOGENIN and that these mechanisms are likely to be crucial for regulating skeletal muscle differentiation and formation.
  • Koki Higashioka, Noriko Koizumi, Hidetoshi Sakurai, Chie Sotozono, Takahiko Sato
    STEM CELLS INTERNATIONAL 2017 9210494 2017年  査読有り
    It is well known that myogenic regulatory factors encoded by the Myod1 family of genes have pivotal roles in myogenesis, with partially overlapping functions, as demonstrated for the mouse embryo. Myogenin-mutant mice, however, exhibit severe myogenic defects without compensation by other myogenic factors. MYOGENIN might be expected to have an analogous function in human myogenic cells. To verify this hypothesis, we generated MYOGENIN-mutated human iPS cells by using CRISPR/Cas9 genome-editing technology. Our results suggest that MYOD1-independent or MYOD1-dependent mechanisms can compensate for the loss of MYOGENIN and that these mechanisms are likely to be crucial for regulating skeletal muscle differentiation and formation.
  • Tomoko Horikiri, Hiromi Ohi, Mitsuaki Shibata, Makoto Ikeya, Morio Ueno, Chie Sotozono, Shigeru Kinoshita, Takahiko Sato
    PLOS ONE 12(1) e0170342 2017年1月  査読有り
    The neural crest is a source to produce multipotent neural crest stem cells that have a potential to differentiate into diverse cell types. The transcription factor SOX10 is expressed through early neural crest progenitors and stem cells in vertebrates. Here we report the generation of SOX10-Nano-lantern (NL) reporter human induced pluripotent stem cells (hiPS) by using CRISPR/Cas9 systems, that are beneficial to investigate the generation and maintenance of neural crest progenitor cells. SOX10-NL positive cells are produced transiently from hiPS cells by treatment with TGF beta inhibitor SB431542 and GSK3 inhibitor CHIR99021. We found that all SOX10-NL-positive cells expressed an early neural crest marker NGFR, however SOX10-NL-positive cells purified from differentiated hiPS cells progressively attenuate their NL-expression under proliferation. We therefore attempted to maintain SOX10NL-positive cells with additional signaling on the plane and sphere culture conditions. These SOX10-NL cells provide us to investigate mass culture with neural crest cells for stem cell research.
  • Masahiko Yamaguchi, Yoko Watanabe, Takuji Ohtani, Akiyoshi Uezumi, Norihisa Mikami, Miki Nakamura, Takahiko Sato, Masahito Ikawa, Mikio Hoshino, Kunihiro Tsuchida, Yuko Miyagoe-Suzuki, Kazutake Tsujikawa, Shin'ichi Takeda, Hiroshi Yamamoto, So-ichiro Fukada
    CELL REPORTS 13(2) 302-314 2015年10月  査読有り
    Calcitonin receptor (Calcr) is expressed in adult muscle stem cells (muscle satellite cells [MuSCs]). To elucidate the role of Calcr, we conditionally depleted Calcr from adult MuSCs and found that impaired regeneration after muscle injury correlated with the decreased number of MuSCs in Calcr-conditional knockout (cKO) mice. Calcr signaling maintained MuSC dormancy via the cAMP-PKA pathway but had no impact on myogenic differentiation of MuSCs in an undifferentiated state. The abnormal quiescent state in Calcr-cKO mice resulted in a reduction of the MuSC pool by apoptosis. Furthermore, MuSCs were found outside their niche in Calcr-cKO mice, demonstrating cell relocation. This emergence from the sublaminar niche was prevented by the CalcrcAMP-PKA and Calcr-cAMP-Epac pathways downstream of Calcr. Altogether, the findings demonstrated that Calcr exerts its effect specifically by keeping MuSCs in a quiescent state and in their location, maintaining the MuSC pool.
  • Yosuke Hiramuki, Takahiko Sato, Yasuhide Furuta, M. Azim Surani, Atsuko Sehara-Fujisawa
    PLOS ONE 10(6) e0130436 2015年6月  査読有り
    When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest(+/-) (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest(+/-); DMD-null mice, decreased muscle growth was observed in Mest(+/-) mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest(+/-); DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.
  • Daigo Nishimura, Hiroshi Sakai, Takahiko Sato, Fuminori Sato, Satoshi Nishimura, Noriko Toyama-Sorimachi, Joerg W. Bartsch, Atsuko Sehara-Fujisawa
    MECHANISMS OF DEVELOPMENT 135 58-67 2015年2月  査読有り
    Skeletal muscle regeneration requires processes different from developmental myogenesis. One important difference is a requirement of inflammatory reactions prior to regenerative myogenesis, by which injured muscle fibers must be eliminated to make new myotubes. In this study, we show that efficient elimination of injured muscle fibers during regeneration requires ADAM8, a member of a disintegrin and metalloprotease (ADAM) family. Skeletal muscle of dystrophin-null mice, an animal model for Duchenne Muscular Dystrophy, deteriorates by the lack of ADAM8, which is characterized by increased area of muscle degeneration and increased number of necrotic and calcified muscle fibers. Adam8 is highly expressed in neutrophils. Upon cardiotoxin-induced skeletal muscle injury, neutrophils invade into muscle fibers through the basement membrane and form large clusters in wild type, but not in ADAM8-deficient mice, although neutrophils of the latter infiltrate into interstitial tissues similarly to those of wild type mice. Neutrophils lose their adhesiveness to blood vessels after infiltration, which includes an ectodomain shedding of P-Selectin Glycoprotein Ligand-1 (PSGL-1) on their surface. Expression of PSGL-1 on the surface of neutrophils remains higher in ADAM8-deficient than in wild type mice. These results suggest that ADAM8 mediates an enhanced invasiveness of neutrophils into injured muscle fibers by the removal of their adhesiveness to blood vessels after infiltration into interstitial tissues. (C) 2014 The Authors. Published by Elsevier Ireland
  • Makoto Fukuta, Yoshinori Nakai, Kosuke Kirino, Masato Nakagawa, Kazuya Sekiguchi, Sanae Nagata, Yoshihisa Matsumoto, Takuya Yamamoto, Katsutsugu Umeda, Toshio Heike, Naoki Okumura, Noriko Koizumi, Takahiko Sato, Tatsutoshi Nakahata, Megumu Saito, Takanobu Otsuka, Shigeru Kinoshita, Morio Ueno, Makoto Ikeya, Junya Toguchida
    PLOS ONE 9(12) 2014年12月  査読有り
    Neural crest cells (NCCs) are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton, cornea, peripheral nervous system, and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs) from human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), further modifications are required to improve the robustness, efficacy, and simplicity of these methods. Chemically defined medium (CDM) was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions, the combination of the GSK3 beta inhibitor and TGF beta inhibitor with a minimum growth factor (insulin) very efficiently induced hNCCs (70-80%) from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons, glia, melanocytes, and corneal endothelial cells. In addition, cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs) were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.
  • Takahiko Sato, Takuya Yamamoto, Atsuko Sehara-Fujisawa
    NATURE COMMUNICATIONS 5 4597 2014年8月  査読有り
    Skeletal muscle stem cells (MuSCs), the major source for skeletal muscle regeneration in vertebrates, are in a state of cell cycle arrest in adult skeletal muscles. Prior evidence suggests that embryonic muscle progenitors proliferate and differentiate to form myofibres and also self-renew, implying that MuSCs, derived from these cells, acquire quiescence later during development. Depletion of Dicer in adult MuSCs promoted their exit from quiescence, suggesting microRNAs are involved in the maintenance of quiescence. Here we identified miR-195 and miR-497 that induce cell cycle arrest by targeting cell cycle genes, Cdc25 and Ccnd. Reduced expression of MyoD in juvenile MuSCs, as a result of overexpressed miR-195/497 or attenuated Cdc25/Ccnd, revealed an intimate link between quiescence and suppression of myogenesis in MuSCs. Transplantation of cultured MuSCs treated with miR-195/497 contributed more efficiently to regenerating muscles of dystrophin-deficient mice, indicating the potential utility of miR-195/497 for stem cell therapies.
  • Hiroshi Sakai, Takahiko Sato, Hidetoshi Sakurai, Takuya Yamamoto, Kazunori Hanaoka, Didier Montarras, Atsuko Sehara-Fujisawa
    PLOS ONE 8(5) e63016 2013年5月  査読有り
    Muscle satellite cells (SCs) are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs) isolated from Pax3(GFP/+) embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+) mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.
  • Sakai Hiroshi, Sato Takahiko, Sakurai Hidetoshi, Hanaoka Kazunori, Montarras Didier, Buckingham Margaret, Sehara-Fujisawa Atsuko
    International Society for Stem Cell Research 10th Annual Meeting(2012.6.15.神 奈川) 2012年  査読有り
  • 酒井大史, 佐藤貴彦, 櫻井英俊, 庄子栄美, Didier Montarras, 瀬原淳子
    The 21th CDB Meeting, The 1st CDB-Regeneration Biology Study Group meeting(2011.11.24 兵庫) 2011年11月24日  査読有り
  • Mounia Lagha, Takahiko Sato, Beatrice Regnault, Ana Cumano, Aimee Zuniga, Jonathan Licht, Frederic Relaix, Margaret Buckingham
    BMC GENOMICS 11 696 2010年12月  査読有り
    Background: Pax3 is a key upstream regulator of the onset of myogenesis, controlling progenitor cell survival and behaviour as well as entry into the myogenic programme. It functions in the dermomyotome of the somite from which skeletal muscle derives and in progenitor cell populations that migrate from the somite such as those of the limbs. Few Pax3 target genes have been identified. Identifying genes that lie genetically downstream of Pax3 is therefore an important endeavour in elucidating the myogenic gene regulatory network. Results: We have undertaken a screen in the mouse embryo which employs a Pax3(GFP) allele that permits isolation of Pax3 expressing cells by flow cytometry and a Pax3(PAX3-FKHR) allele that encodes PAX3-FKHR in which the DNA binding domain of Pax3 is fused to the strong transcriptional activation domain of FKHR. This constitutes a gain of function allele that rescues the Pax3 mutant phenotype. Microarray comparisons were carried out between Pax3(GFP/+) and Pax3(GFP/PAX3-FKHR) preparations from the hypaxial dermomyotome of somites at E9.5 and forelimb buds at E10.5. A further transcriptome comparison between Pax3-GFP positive and negative cells identified sequences specific to myogenic progenitors in the forelimb buds. Potential Pax3 targets, based on changes in transcript levels on the gain of function genetic background, were validated by analysis on loss or partial loss of function Pax3 mutant backgrounds. Sequences that are up-or down-regulated in the presence of PAX3-FKHR are classified as somite only, somite and limb or limb only. The latter should not contain sequences from Pax3 positive neural crest cells which do not invade the limbs. Verification by whole mount in situ hybridisation distinguishes myogenic markers. Presentation of potential Pax3 target genes focuses on signalling pathways and on transcriptional regulation. Conclusions: Pax3 orchestrates many of the signalling pathways implicated in the activation or repression of myogenesis by regulating effectors and also, notably, inhibitors of these pathways. Important transcriptional regulators of myogenesis are candidate Pax3 targets. Myogenic determination genes, such as Myf5 are controlled positively, whereas the effect of Pax3 on genes encoding inhibitors of myogenesis provides a potential brake on differentiation. In the progenitor cell population, Pax7 and also Hdac5 which is a potential repressor of Foxc2, are subject to positive control by Pax3.
  • Takahiko Sato, Didier Rocancourt, Luis Marques, Solveig Thorsteinsdottir, Margaret Buckingham
    PLOS GENETICS 6(4) e1000897 2010年4月  査読有り
    All skeletal muscle progenitor cells in the body derive from the dermomyotome, the dorsal epithelial domain of developing somites. These multipotent stem cells express Pax3, and this expression is maintained in the myogenic lineage where Pax3 plays an important role. Identification of Pax3 targets is therefore important for understanding the mechanisms that underlie the onset of myogenesis. In a microarray screen of Pax3-GFP sorted cells, with analysis on Pax3 gain and loss of function genetic backgrounds, we identify Dmrt2, expressed in the dermomyotome, as a Pax3 target. In vitro gel shift analysis and chromatin immunoprecipitation with in vivo extracts show that Pax3 binds to a conserved 286 bp sequence, situated at -18 kb from Dmrt2. This sequence directs reporter transgene expression to the somite, and this is severely affected when the Pax3 site is mutated in the context of the locus. In Dmrt2 mutant embryos, somite maturation is perturbed and the skeletal muscle of the myotome is abnormal. We now report that the onset of myogenesis is also affected. This depends on activation, in the epaxial dermomyotome, of the myogenic determination gene, Myf5, through its early epaxial enhancer. This sequence contains sites that bind Dmrt2, which belongs to the DM class of DNA-binding proteins. Mutation of these sites compromises activity of the enhancer in transgenic embryos where the reporter transgene is under the control of the Myf5 epaxial enhancer. Transactivation of this site by Dmrt2 is demonstrated in vitro, and conditional overexpression of Dmrt2 in Pax3 expressing cells in the somite confirms the role of this factor in the activation of Myf5. These results reveal a novel genetic network, comprising a Pax3/Dmrt2/Myf5 regulatory cascade that operates in stem cells of the epaxial dermomyotome to initiate skeletal muscle formation.
  • M. Lagha, T. Sato, L. Bajard, P. Daubas, A. Esner, D. Montarras, F. Relaix, M. Buckingham
    CONTROL AND REGULATION OF STEM CELLS 73 307-+ 2008年  査読有り
    Pax genes have important roles in the regulation of stern cell behavior, leading to tissue differentiation. In the case of skeletal muscle, Pax3 and Pax7 perforin this function both during development and on regeneration in the adult. The myogenic determination gene Myf5 is directly activated by Pax3, leading to the formation of skeletal muscle. Fgfr4 is also a direct Pax3 target and Sproutyl, which encodes an intracellular inhibitor of Fibroblast growth factor (FGF) signaling, is under Pax3 control. Orchestration of FGF signaling, through Fgfr4/Sproutyl, modulates the entry of cells into the myogenic program, thus controling the balance between stein cell self-renewal and tissue differentiation. This and other aspects of Pax3/7 function in regulating the behavior of skeletal muscle stem cells are discussed.
  • T Sato, N Sasai, Y Sasai
    DEVELOPMENT 132(10) 2355-2363 2005年5月  査読有り
    A number of regulatory genes have been implicated in neural crest development. However, the molecular mechanism of how neural crest determination is initiated in the exact ectodermal location still remains elusive. Here, we show that the cooperative function of Pax3 and Zic1 determines the neural crest fate in the amphibian ectoderm. Pax3 and Zic1 are expressed in an overlapping manner in the presumptive neural crest area of the Xenopus gastrula, even prior to the onset of the expression of the early bona fide neural crest marker genes Foxd3 and Slug. Misexpression of both Pax3 and Zic1 together efficiently induces ectopic neural crest differentiation in the ventral ectoderm, whereas overexpression of either one of them only expands the expression of neural crest markers within the dorsolateral ectoderm. The induction of neural crest differentiation by Pax3 and Zic1 requires Wnt signaling. Loss-of-function studies in vivo and in the animal cap show that co-presence of Pax3 and Zic1 is essential for the initiation of neural crest differentiation. Thus, co-activation of Pax3 and Zic1, in concert with Wnt, plays a decisive role for early neural crest determination in the correct place of the Xenopus ectoderm.
  • T Sato, K Takabe, M Fujita
    COMPTES RENDUS BIOLOGIES 327(9-10) 827-836 2004年9月  査読有り
    Phenylalanine, ammonia-lyase (PAL; EC 4.3.1.5) and cinnamate-4-hydroxylase (C4H; EC 1.14.13.11) are pivotal enzymes involved in lignification. We synthesized peptides as the epitopes according to the amino acid sequences of these enzymes, coupled them with hemocyanin, and injected them into mice. The antiserums against peptides of PAL and C4H specifically detected PAL and C4H in the crude enzymes extracted from differentiating xylem of poplar, respectively. PAL and C4H were localized in differentiating xylem of poplar. PAL labeling was mainly localized in the cytosol, and somewhat localized on the rough-endoplasmic reticulum (r-ER) and the Golgi apparatus. In contrast, C4H was mainly observed on r-ER and the Golgi apparatus. These findings suggest that conversion of phenylalanine to cinnamic acid occurs in the cytosol and the following reaction occurs near the membrane of r-ER and the Golgi apparatus. The possibility of coordinated localization of PAL and C4H is discussed. (C) 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
  • K Takabe, M Takeuchi, T Sato, M Ito, M Fujita
    JOURNAL OF PLANT RESEARCH 114(1116) 509-515 2001年12月  査読有り
    A knowledge of the localization of the enzymes involved in lignification is essential to better understand the dynamics of lignin biosynthesis in the cell, as well as the regulation of lignification in woody plants. Though most of the enzymes involved in lignification have been identified, their localization in the cell and cell wall remains equivocal. Immunocytochemistry is a powerful tool with which to investigate the localization of a target substance such as an enzyme in cells. Our recent immunolabeling experiments revealed that phenylalanine ammonia-lyase, 4-coumalate: CoA ligase, caffeate O-methyltransferase, and cinnnamyl alcohol dehydrogenase were localized to differentiating xylem. These enzymes are particularly abundant during secondary wall formation. Immunolabeling was observed on polysomes and in the cytosol of the cells during secondary wall formation, indicating that these enzymes are synthesized in the polysomes and released in the cytosol. The synthesis of monolignols might occur in the cytosol. Immunolabeling of anionic peroxidase was also localized to the differentiating xylem, particularly during secondary wall formation. The labeling, however, was observed in the rough endoplasmic reticulum (r-ER), the Golgi apparatus, and the plasma membrane, indicating that peroxidase is synthesized in the r-ER, transported to the Golgi apparatus, and localized on the plasma membrane by fusion of the Golgi vesicles to the membrane.

MISC

 10

書籍等出版物

 5

講演・口頭発表等

 2

担当経験のある科目(授業)

 2

共同研究・競争的資金等の研究課題

 12

産業財産権

 3

その他

 1
  • 骨格筋幹細胞誘導法(遺伝子リプログラミング、発生学的分化誘導法) Sato et al., Stem Cell Reports, 2019 ; Sato, J Neuromuscular Diseases, 2020) *本研究シーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進センター(fuji-san@fujita-hu.ac.jp)まで