Department of Endocrinology, Diabetes and Metaboli

Yusuke Seino

  (清野 祐介)

Profile Information

Affiliation
School of Medicine Faculty of Medicine, Fujita Health University
内分泌・代謝・糖尿病内科学
Degree
医学博士(名古屋大学大学院医学系研究科)

J-GLOBAL ID
201101080357125120
researchmap Member ID
6000030026

Papers

 96
  • Haruki Fujisawa, Takashi Watanabe, Okiru Komine, Sachiho Fuse, Momoka Masaki, Naoko Iwata, Naoya Murao, Yusuke Seino, Hideyuki Takeuchi, Koji Yamanaka, Makoto Sawada, Atsushi Suzuki, Yoshihisa Sugimura
    Free radical biology & medicine, Aug 16, 2024  Peer-reviewed
    Hyponatremia is the most common clinical electrolyte disorder. Chronic hyponatremia has been recently reported to be associated with falls, fracture, osteoporosis, neurocognitive impairment, and mental manifestations. In the treatment of chronic hyponatremia, overly rapid correction of hyponatremia can cause osmotic demyelination syndrome (ODS), a central demyelinating disease that is also associated with neurological morbidity and mortality. Using a rat model, we have previously shown that microglia play a critical role in the pathogenesis of ODS. However, the direct effect of rapid correction of hyponatremia on microglia is unknown. Furthermore, the effect of chronic hyponatremia on microglia remains elusive. Using microglial cell lines BV-2 and 6-3, we show here that low extracellular sodium concentrations (36 mmol/L decrease; LS) suppress Nos2 mRNA expression and nitric oxide (NO) production of microglia. On rapid correction of low sodium concentrations, NO production was significantly increased in both cells, suggesting that acute correction of hyponatremia partly directly contributes to increased Nos2 mRNA expression and NO release in ODS pathophysiology. LS also suppressed expression and nuclear translocation of nuclear factor of activated T cells-5 (NFAT5), a transcription factor that regulates the expression of genes involved in osmotic stress. Furthermore, overexpression of NFAT5 significantly increased Nos2 mRNA expression and NO production in BV-2 cells. Expressions of Nos2 and Nfat5 mRNA were also modulated in microglia isolated from cerebral cortex in chronic hyponatremia model mice. These data indicate that LS modulates microglial NO production dependent on NFAT5 and suggest that microglia contribute to hyponatremia-induced neuronal dysfunctions.
  • Koki Nishida, Shinji Ueno, Yusuke Seino, Shihomi Hidaka, Naoya Murao, Yuki Asano, Haruki Fujisawa, Megumi Shibata, Takeshi Takayanagi, Kento Ohbayashi, Yusaku Iwasaki, Katsumi Iizuka, Shoei Okuda, Mamoru Tanaka, Tadashi Fujii, Takumi Tochio, Daisuke Yabe, Yuuichiro Yamada, Yoshihisa Sugimura, Yoshiki Hirooka, Yoshitaka Hayashi, Atsushi Suzuki
    Nutrients, 16(14) 2270-2270, Jul 14, 2024  Peer-reviewed
    (1) Background: Proglucagon-derived peptides (PDGPs) including glucagon (Gcg), GLP-1, and GLP-2 regulate lipid metabolism in the liver, adipocytes, and intestine. However, the mechanism by which PGDPs participate in alterations in lipid metabolism induced by high-fat diet (HFD) feeding has not been elucidated. (2) Methods: Mice deficient in PGDP (GCGKO) and control mice were fed HFD for 7 days and analyzed, and differences in lipid metabolism in the liver, adipose tissue, and duodenum were investigated. (3) Results: GCGKO mice under HFD showed lower expression levels of the genes involved in free fatty acid (FFA) oxidation such as Hsl, Atgl, Cpt1a, Acox1 (p < 0.05), and Pparα (p = 0.05) mRNA in the liver than in control mice, and both FFA and triglycerides content in liver and adipose tissue weight were lower in the GCGKO mice. On the other hand, phosphorylation of hormone-sensitive lipase (HSL) in white adipose tissue did not differ between the two groups. GCGKO mice under HFD exhibited lower expression levels of Pparα and Cd36 mRNA in the duodenum as well as increased fecal cholesterol contents compared to HFD-controls. (4) Conclusions: GCGKO mice fed HFD exhibit a lesser increase in hepatic FFA and triglyceride contents and adipose tissue weight, despite reduced β-oxidation in the liver, than in control mice. Thus, the absence of PGDP prevents dietary-induced fatty liver development due to decreased lipid uptake in the intestinal tract.
  • Eita Uenishi, Yusuke Seino, Akira Nakashima, Katsuhiko Kato, Mitsuhiro Kato, Hiroshi Nagasaki, Kota Ishikawa, Takako Izumoto, Masaaki Yamamoto, Yutaka Takahashi, Yoshihisa Sugimura, Yutaka Oiso, Shin Tsunekawa
    Biochemical and biophysical research communications, 714 149940-149940, Jun 25, 2024  Peer-reviewed
    Orthostatic hypotension (OH) is a common condition. Many potential etiologies of OH have been identified, but in clinical practice the underlying cause of OH is often unknown. In the present study, we identified a novel and extraordinary etiology of OH. We describe a first case of acquired severe OH with syncope, and the female patient had extremely low levels of catecholamines and serotonin in plasma, urine and cerebrospinal fluid (CSF). Her clinical and biochemical evidence showed a deficiency of the enzyme aromatic l-amino acid decarboxylase (AADC), which converts l-DOPA to dopamine, and 5-hydroxytryptophan to serotonin, respectively. The consequence of pharmacologic stimulation of catecholaminergic nerves and radionuclide examination revealed her catecholaminergic nerves denervation. Moreover, we found that the patient's serum showed presence of autoantibodies against AADC, and that isolated peripheral blood mononuclear cells (PBMCs) from the patient showed cytokine-induced toxicity against AADC. These observations suggest that her autoimmunity against AADC is highly likely to cause toxicity to adrenal medulla and catecholaminergic nerves which contain AADC, resulting in hypocatecholaminemia and severe OH. Administration of vitamin B6, an essential cofactor of AADC, enhanced her residual AADC activity and drastically improved her symptoms. Our data thus provide a new insight into pathogenesis and pathophysiology of OH.
  • Sachiho Fuse, Haruki Fujisawa, Naoya Murao, Naoko Iwata, Takashi Watanabe, Yusuke Seino, Hideyuki Takeuchi, Atsushi Suzuki, Yoshihisa Sugimura
    Peptides, 179 171267-171267, Jun 20, 2024  Peer-reviewed
    Signs and symptoms of hypernatremia largely indicate central nervous system dysfunction. Acute hypernatremia can cause demyelinating lesions similar to that observed in osmotic demyelination syndrome (ODS). We have previously demonstrated that microglia accumulate in ODS lesions and minocycline protects against ODS by inhibiting microglial activation. However, the direct effect of rapid rise in the sodium concentrations on microglia is largely unknown. In addition, the effect of chronic hypernatremia on microglia also remains elusive. Here, we investigated the effects of acute (6 or 24 h) and chronic (the extracellular sodium concentration was increased gradually for at least 7 days) high sodium concentrations on microglia using the microglial cell line, BV-2. We found that both acute and chronic high sodium concentrations increase NOS2 expression and nitric oxide (NO) production. We also demonstrated that the expression of nuclear factor of activated T-cells-5 (NFAT5) is increased by high sodium concentrations. Furthermore, NFAT5 knockdown suppressed NOS2 expression and NO production. We also demonstrated that high sodium concentrations decreased intracellular Ca2+ concentration and an inhibitor of Na+/Ca2+ exchanger, NCX, suppressed a decrease in intracellular Ca2+ concentrations and NOS2 expression and NO production induced by high sodium concentrations. Furthermore, minocycline inhibited NOS2 expression and NO production induced by high sodium concentrations. These in vitro data suggest that microglial activity in response to high sodium concentrations is regulated by NFAT5 and Ca2+ efflux through NCX and is suppressed by minocycline.
  • Katsumi Iizuka, Kanako Deguchi, Chihiro Ushiroda, Kotone Yanagi, Yusuke Seino, Atsushi Suzuki, Daisuke Yabe, Hitomi Sasaki, Satoshi Sasaki, Eiichi Saitoh, Hiroyuki Naruse
    Nutrients, 16(11) 1742-1742, Jun 2, 2024  Peer-reviewed
    In Japan, nutritional guidance based on food-recording apps and food frequency questionnaires (FFQs) is becoming popular. However, it is not always recognized that different dietary assessment methods have different nutritional values. Here, we compared the compatibility of dietary intake data obtained from an app with those obtained from FFQs in 59 healthy individuals who recorded information regarding their diet for at least 7 days per month using an app developed by Asken (Tokyo, Japan). The diurnal coefficient of variation in total energy and protein intake was 20%, but those for vitamins B12 and D were >80%, reflecting the importance of 7 days of recording rather than a single day of recording for dietary intake analyses. Then, we compared the results of two FFQs—one based on food groups and one based on a brief self-administered diet history questionnaire—for 7 days, as recorded by the app. There was a correlation coefficient of >0.4 for all the items except salt. Regarding the compatibility between the app and FFQs, the percentage errors for total energy and nutrients were >40–50%, suggesting no agreement between the app and the two FFQs. In conclusion, careful attention should be paid to the impact of different dietary assessment methods on nutrient assessment.

Misc.

 222

Books and Other Publications

 14

Presentations

 40

Research Projects

 21