基本情報
- 所属
- 藤田医科大学 医学部微生物学 客員教授金城学院大学 薬学部 客員教授名古屋大学 医学部/大学院医学系研究科 招へい教員(非常勤講師)厚生労働省 国立感染症研究所 元部長 名誉所員東海国立大学機構 名古屋大学 名誉教授
- 学位
- 医学博士(1989年3月 名古屋大学)
- 研究者番号
- 10212622
- J-GLOBAL ID
- 201101032201306103
- Researcher ID
- P-5997-2015
- researchmap会員ID
- 6000030043
In the 1980s, I initiated the analyses of a chromosomal genetic region (cps cluster) that is responsible for biosynthesis of K2 capsular polysaccharide in Klebsiella pneumoniae strain Chedid, as well as the characterization of chromosomally encoded β‐lactamase LEN-1 of K. pneumoniae strain LEN-1. My collaborators and I firstly succeeded in the expression of K2 capsular polysaccharide of strain Chedis in an Escherichia coli K12 by introduction of an about 24-kb chromosomal DNA fragment of Chedid. We also found that several regulatory proteins, chromosomal RcsA and RcsB, as well as plasmid mediated RmpA2, were involved in the expression of the cps clusters of K. pneumoniae Chedid.
As for the characterization of β‐lactamase LEN-1 produced by K. pneumoniae strain LEN-1, we found that the amino acid sequence of LEN-1 showed a very high similarity to the R‐plasmid‐mediated penicillinase TEM‐1 on the amino acid sequence level, and this strongly suggested the origination of TEM‐1 from the chromosomal penicillinases of K. pneumoniae or related bacteria.
Moreover, the chromosomal KOXY β‐lactamase (or K1 β‐lactamase) of Klebsiella oxytoca was found to belong to the class A β‐lactamases that include LEN‐1 and TEM‐1, although KOXY can effectively hydrolyze cefoperazone (CPZ) like the chromosomal AmpC type cephalosporinases of various Enterobacteriaceae that can hydrolyze several cephalosporins including CPZ.
Furthermore, my collaborators and I found plural novel serine‐type β‐lactamases, such as MOX‐1, SHV‐24, TEM‐91, CTX‐M‐64, CMY‐9, CMY‐19, GES‐3, GES‐4, and TLA‐3, mediated by plasmids. Besides these serine‐type β‐lactamases, we also first identified exogenously acquired metallo‐β‐lactamases (MBLs), IMP‐1 and SMB‐1, in imipenem‐resistant Serratia marcescens, and the IMP‐1‐producing S. marcescens TN9106 became the index case for carbapenemase‐producing Enterobacteriaceae (CPE). I developed the sodium mercaptoacetic acid (SMA)‐disk test for the simple identification of MBL‐producing bacteria. We were also the first to identify a variety of plasmid‐mediated 16S ribosomal RNA methyltransferases, RmtA, RmtB, RmtC, and NpmA, from various Gram‐negative bacteria that showed very high levels of resistance to a wide range of aminoglycosides. Furthermore, we first found plasmid‐mediated quinolone efflux pump (QepA) and fosfomycin‐inactivating enzymes, e.g., plasmid-mediated FosA3 of E. coli and chromosomally-encoded FosK in Acinetobacter soli.
We also characterized the penicillin-reduced susceptible Streptococcus agalactiae (PRGBS) for the first time, together with macrolide‐resistant Mycoplasma pneumoniae, Campylobacter jejuni, and Helicobacter pylori, as well as carbapenem‐resistant Haemophilus influenzae.
At present, my research group is involved with the researches and developments of inhibitors for MBLs and serine-type carbapenemases to overcome the urgent AMR issues by the support of AMED (Japan Agency for Medical Research and Development).
研究分野
3主要な経歴
29-
2020年4月 - 現在
-
2020年4月 - 現在
-
2020年4月 - 2024年3月
学歴
3-
1985年4月 - 1989年3月
-
1984年11月 - 1985年3月
-
1975年4月 - 1983年9月
委員歴
29-
2023年10月 - 現在
-
2016年12月 - 現在
-
2012年7月 - 現在
-
2011年4月 - 現在
受賞
3論文
297-
Antimicrobial Agents and Chemotherapy 68(4) e0117923 2024年4月3日 査読有りABSTRACT Streptococcus mitis/oralis group isolates with reduced carbapenem susceptibility have been reported, but its isolation rate in Japan is unknown. We collected 356 clinical α-hemolytic streptococcal isolates and identified 142 of them as S. mitis/oralis using partial sodA sequencing. The rate of meropenem non-susceptibility was 17.6% (25/142). All 25 carbapenem-non-susceptible isolates harbored amino acid substitutions in/near the conserved motifs in PBP1A, PBP2B, and PBP2X. Carbapenem non-susceptibility is common among S. mitis/oralis group isolates in Japan.
-
Microbiology Spectrum 12(3) e0234423 2024年2月5日The number and type of metallo-β-lactamase (MΒL) are increasing over time. Carbapenem resistance conferred by MΒL is a significant threat to our antibiotic regimen, and the development of MΒL inhibitors is urgently required to restore carbapenem efficacy. Microbial natural products have served as important sources for developing antimicrobial agents targeting pathogenic bacteria since the discovery of antibiotics in the mid-20th century. MΒL inhibitors derived from microbial natural products are still rare compared to those derived from chemical compound libraries. Hydroxyhexylitaconic acids (HHIAs) produced by members of the genus Aspergillus have potent inhibitory activity against clinically relevant IMP-type MBL. HHIAs may be good lead compounds for the development of MBL inhibitors applicable for controlling carbapenem resistance in IMP-type MBL-producing Enterobacterales .
-
Japanese Journal of Infectious Diseases 2024年1月31日All clinical isolates of Streptococcus dysgalactiae subsp. equisimilis (SDSE) are considered susceptible to β-lactams, the first-line drugs used for SDSE infections. However, penicillin-non-susceptible SDSE has been reported from Denmark. In this study, we attempted to detect β-lactam-non-susceptible clinical isolates of SDSE in Japan. One hundred and fifty clinical isolates of S. dysgalactiae were collected in 2018, and species identification was performed using Rapid ID Strep API. The minimum inhibitory concentrations (MIC) of six β-lactams (penicillin G, oxacillin, ceftizoxime, ceftibuten, cefoxitin, and cefaclor) were determined for 85 clinical isolates of SDSE using the agar dilution method standardized by the Clinical Laboratory Standards Institute. For the 85 isolates identified as SDSE, the MIC ranges of penicillin G, oxacillin, ceftizoxime, ceftibuten, cefoxitin, and cefaclor were 0.007-0.06, 0.03-0.12, 0.015-0.06, 0.25-2, 0.12-2, and 0.06-0.5 μg/mL, respectively. None of the clinical isolates were non-susceptible to penicillin G, indicating that all 85 clinical isolates of SDSE were susceptible to β-lactams. Our findings indicate that almost all clinical isolates of SDSE in several prefectures of Japan remain susceptible to β-lactams. Nevertheless, there remains a need for continuous and careful monitoring of drug susceptibility among clinical isolates of SDSE in Japan.
-
Diagnostic microbiology and infectious disease 105(3) 115881-115881 2023年3月We used 73 group B Streptococcus with reduced penicillin susceptibility (PRGBS) isolates and determined more rational cutoff values of previously developed disk diffusion method for detecting PRGBS using oxacillin, ceftizoxime, and ceftibuten disks. Using the novel cutoff values, the three disks showed high sensitivity and specificity, which were above 90.0%.
-
Journal of Microbiological Methods 204 106645-106645 2023年1月
MISC
1125-
日本化学療法学会雑誌 62(Suppl.A) 369-369 2014年5月
-
日本細菌学雑誌 69(1) 198-198 2014年2月
-
化学療法の領域 30(1) 80-89 2013年12月アミノグリコシドは細菌の30Sリボソームに結合し、細菌の正常なタンパク合成を阻害する抗菌薬である。一方、細菌側もアミノグリコシドに抵抗性を付与する因子をすでに多数獲得しており、アミノグリコシド耐性因子は、グラム陽性、陰性菌を問わず拡散しているのが現状である。アミノグリコシド耐性機構としてもっとも種類が多く、よく知られているのが、アミノグリコシドを化学的に、修飾、不活化するアミノグリコシド修飾酵素である。アミノグリコシド修飾酵素はその反応機構の違いにより、アセチル化、リン酸化、アデニリル化に大別される。さらに、近年では16S rRNAメチルトランスフェラーゼと呼ばれ、30Sリボソーム中の16S rRNAをメチル化することでアミノグリコシド耐性を付与する新しい耐性機構が発見され、注目されている。アミノグリコシド耐性機構は排出機構や16S rRNAの点変異なども含め数多く解明されてきているが、本稿では、アミノグリコシド修飾酵素と16S rRNAメチルトランスフェラーゼに焦点を当てて紹介したい。(著者抄録)
-
日本臨床微生物学雑誌 23(4) 236-236 2013年12月
-
Medical Technology 41(12) 1259-1263 2013年12月
-
日本臨床微生物学雑誌 23(4) 170-170 2013年12月
-
日本臨床微生物学雑誌 23(4) 171-171 2013年12月
-
第42回 薬剤耐性菌研究会 抄録集(2013年10月17日-18日:熱海、静岡) 2013年10月
-
第42回 薬剤耐性菌研究会 抄録集 (2013年10月17日-18日:熱海、静岡) 2013年10月
-
第42回 薬剤耐性菌研究会抄録集 (2013年10月17日-18日:熱海、静岡) 2013年10月 最終著者
書籍等出版物
27講演・口頭発表等
108担当経験のある科目(授業)
1-
1989年 - 現在医学細菌学、病原細菌学、薬剤耐性菌等 (名古屋大学 [医、保健、工]、群馬大学 [医]、千葉大学 [薬]、東京薬科大学 [薬]、愛知学院大学 [歯・薬]、岐阜薬科大学 [薬]、愛知医科大学[医]、 他)
所属学協会
6共同研究・競争的資金等の研究課題
32-
日本医療研究開発機構(AMED) 創薬支援推進事業・創薬総合支援事業 2022年4月 - 2025年3月
-
日本医療研究開発機構(AMED) 創薬支援推進事業 2020年4月 - 2022年3月
-
日本医療研究開発機構(AMED) 創薬総合支援事業 2017年1月 - 2019年12月
-
日本医療研究開発機構(AMED) 感染症実用化研究事業 2016年4月 - 2019年3月
-
日本医療研究開発機構(AMED) 感染症研究国際展開戦略プログラム(J-GRID) 2015年10月 - 2018年3月