M NORITA, TP HICKS, G BENEDEK, Y KATOH
JOURNAL FUR HIRNFORSCHUNG, 32(1) 119-134, 1991 Peer-reviewed
Extracellular recordings with carbon fiber-filled microelectrodes were used to identify the visually responsive area within the insular cortex (referred to hereafter as the insular visual area, IVA) of anaesthetized cats. Broadly speaking, IVA comprises the cortex surrounding the anterior ectosylvian sulcus (AEs) along its ventral bank and the major portion of the anterior sylvian gyrus. Visually sensitive cells were recorded along the whole length of the AEs. In the same animals, the afferent connections of IVA were studied through the use of the retrograde tracers wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) and fluorescent Diamindino yellow (DY), in combination with standard electrophysiological stimulation and recording techniques. The results indicate that: (1) the IVA receives a wide variety of telencephalic inputs, not only from visual, sensorimotor, auditory, limbic and association cortical areas, and from the claustrum, amygdala and basal nucleus of Meynert, as well, but also from the diencephalic projections arising mainly from the lateralis medialis-suprage niculate nuclear complex (LM-Sg) and the ventral medial nucleus (VM). (2) The gyral part of IVA (gIVA) receives afferents mainly from the lateral part of the lateral suprasylvian visual area (LS) throughout almost its entire length, as well as from area 20, the posterior suprasylvian sulcal area (PS), the frontal eye fields, areas 6 and 36, and almost the whole length of the cortical area lying along the anterior ectosylvian sulcus (AEs). (3) By contrast with (2), the sulcal part of IVA (aIVA) which corresponds to the anterior part of the anterior ectosylvian visual area (AEV) of Norita et al. ('86), receives cortical projections mainly from the lateral and medial parts of the anterior half of LS, area 20, PS, the frontal eye fields, area 36, and most parts of the cortical area extending along the AEs. (4) Subcortically, IVA receives thalamic afferents mainly from VM and LM-Sg. The connections between IVA and LM-Sg are organized topographically, with the more anterior part of IVA being related to the more ventral portion of LM-Sg, and with sIVA being related chiefly to the mid-portions of LM-Sg. These results thus suggest that IVA may function as an integrative centre among structures belonging to the extrageniculostriate system, the sensorimotor system, as well as to the limbic system. Furthermore, our electrophysiological and anatomical findings, together with previous reports concerning AEV, suggest that the posterior part of AEV (AEV proper) is dinstinctive from gIVA, and that the sIVA apparently serves as a transitional region between AEV and gIVA.