精神・神経病態解明センター準備室

Taku Nagai

  (永井 拓)

Profile Information

Affiliation
Professor, Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University
(Concurrent)Vice Director, International Center for Brain Science (ICBS)
(Concurrent)Professor, Department of Behavioral Neuropharmacology, Graduate School of Medicine
(Concurrent)Vice Director, Open Facility Center
Degree
M.S.(Meijo University)
Ph.D.(Nagoya University)

J-GLOBAL ID
200901083965882198
researchmap Member ID
5000081871

Research Areas

 1

Papers

 187
  • Youyun Zhu, Kanako Kitagawa, Daisuke Mori, Tetsuo Matsuzaki, Taku Nagai, Toshitaka Nabeshima, Sayaka Takemoto-Kimura, Hiroaki Ikesue, Norio Ozaki, Hiroyuki Mizoguchi, Kiyofumi Yamada
    European Journal of Pharmacology, Jan, 2026  
  • Hisayoshi Kubota, Xinjian Zhang, Masoumeh Khalili, Xinzhu Zhou, Yu Wen, Taku Nagai
    International Journal of Molecular Sciences, May 28, 2025  
  • Masaya Hasegawa, Kazuo Kunisawa, Bolati Wulaer, Hisayoshi Kubota, Hitomi Kurahashi, Takatoshi Sakata, Honomi Ando, Suwako Fujigaki, Hidetsugu Fujigaki, Yasuko Yamamoto, Taku Nagai, Kuniaki Saito, Toshitaka Nabeshima, Akihiro Mouri
    British Journal of Pharmacology, Dec 10, 2024  
    Background and Purpose Alterations in tryptophan‐kynurenine (TRP‐KYN) pathway are implicated in major depressive disorder (MDD). α7 nicotinic acetylcholine (α7nACh) receptor regulates the hypothalamic–pituitary–adrenal (HPA) axis. We have shown that deficiency of kynurenine 3‐monooxygenase (KMO) induces depression‐like behaviour via kynurenic acid (KYNA; α7nACh antagonist). In this study, we investigated the involvement of the TRP‐KYN pathway in stress‐induced behavioural changes and the regulation of the HPA axis. Experimental Approach Mice were exposed to chronic unpredictable mild stress (CUMS) and subjected to behavioural tests. We measured TRP‐KYN metabolites and the expression of their enzymes in the hippocampus. KMO heterozygous mice were used to investigate stress vulnerability. We also evaluated the effect of nicotine (s.c.) on CUMS‐induced behavioural changes and an increase in serum corticosterone (CORT) concentration. Key Results CUMS decreased social interaction time but increased immobility time under tail suspension associated with increased serum corticosterone concentration. CUMS increased KYNA levels via KMO suppression with microglial decline in the hippocampus. Kmo+/− mice were vulnerable to stress: they exhibited social impairment and increased serum corticosterone concentration even after short‐term CUMS. Nicotine attenuated CUMS‐induced behavioural changes and increased serum corticosterone concentration by inhibiting the increase in corticotropin‐releasing hormone. Methyllycaconitine (α7nACh antagonist) inhibited the attenuating effect of nicotine. Conclusions and Implications CUMS‐induced behavioural changes and the HPA axis dysregulation could be induced by the increased levels of KYNA via KMO suppression. KYNA plays an important role in the pathophysiology of MDD as an α7nACh antagonist. Therefore, α7nACh receptor is an attractive therapeutic target for MDD.
  • Hitomi Kurahashi, Kazuo Kunisawa, Kenji F. Tanaka, Hisayoshi Kubota, Masaya Hasegawa, Mai Miyachi, Yuka Moriya, Yoichi Hasegawa, Taku Nagai, Kuniaki Saito, Toshitaka Nabeshima, Akihiro Mouri
    Neuropsychopharmacology, Oct 11, 2024  
    Abstract Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, social deficits, and cognitive impairments. Maternal use of valproic acid (VPA) during pregnancy is associated with an increased risk of ASD in offspring. The prevailing pathophysiological hypothesis for ASD involves excitation/inhibition (E/I) imbalances and serotonergic dysfunction. Here, we investigated the association between glutamatergic-serotonergic neuronal interactions and ASD-like behaviors in mice exposed to prenatal VPA. Prenatal VPA exposure induced excessive repetitive self-grooming behavior and impaired social behavior and object recognition memory in young adult period. Prenatal VPA mice showed hyper-glutamatergic function (increase in basal extracellular glutamate levels and CaMKII phosphorylation) and hypo-serotonergic function (decrease in 5-hydroxyindoleacetic acid and stimulation-induced serotonin [5-HT] release, but an increase in 5-HT transporter expression) in the prefrontal cortex. Treatment with a low-affinity NMDA receptor antagonist (memantine), a selective 5-HT reuptake inhibitor (fluoxetine), and a 5-HT1A receptor agonist (tandospirone) attenuated both the increase in CaMKII phosphorylation and ASD-like behavior of prenatal VPA mice. Opto-genetic activation of the serotonergic neuronal system attenuated impairments in social behavior and object recognition memory in prenatal VPA mice. WAY-100635—a 5-HT1A receptor antagonist—antagonized the effect of fluoxetine on impaired social behavior and object recognition memory. These results suggest that E/I imbalance and ASD-like behavior are associated with hypo-serotonergic receptor signaling through 5-HT1A receptors in prenatal VPA mice.
  • Yasuhiro Funahashi, Rijwan Uddin Ahammad, Xinjian Zhang, Emran Hossen, Masahiro Kawatani, Shinichi Nakamuta, Akira Yoshimi, Minhua Wu, Huanhuan Wang, Mengya Wu, Xu Li, Md Omar Faruk, Md Hasanuzzaman Shohag, You-Hsin Lin, Daisuke Tsuboi, Tomoki Nishioka, Keisuke Kuroda, Mutsuki Amano, Yukihiko Noda, Kiyofumi Yamada, Kenji Sakimura, Taku Nagai, Takayuki Yamashita, Shigeo Uchino, Kozo Kaibuchi
    Science signaling, 17(853) eado9852, Sep 10, 2024  
    Structural plasticity of dendritic spines in the nucleus accumbens (NAc) is crucial for learning from aversive experiences. Activation of NMDA receptors (NMDARs) stimulates Ca2+-dependent signaling that leads to changes in the actin cytoskeleton, mediated by the Rho family of GTPases, resulting in postsynaptic remodeling essential for learning. We investigated how phosphorylation events downstream of NMDAR activation drive the changes in synaptic morphology that underlie aversive learning. Large-scale phosphoproteomic analyses of protein kinase targets in mouse striatal/accumbal slices revealed that NMDAR activation resulted in the phosphorylation of 194 proteins, including RhoA regulators such as ARHGEF2 and ARHGAP21. Phosphorylation of ARHGEF2 by the Ca2+-dependent protein kinase CaMKII enhanced its RhoGEF activity, thereby activating RhoA and its downstream effector Rho-associated kinase (ROCK/Rho-kinase). Further phosphoproteomic analysis identified 221 ROCK targets, including the postsynaptic scaffolding protein SHANK3, which is crucial for its interaction with NMDARs and other postsynaptic scaffolding proteins. ROCK-mediated phosphorylation of SHANK3 in the NAc was essential for spine growth and aversive learning. These findings demonstrate that NMDAR activation initiates a phosphorylation cascade crucial for learning and memory.

Misc.

 242
  • 張 心健, 貝淵 弘三, 永井 拓
    ファルマシア, 60(11) 1030-1034, Nov 1, 2024  Peer-reviewedInvited
  • 船橋靖広, 船橋靖広, AHAMMAD Rijwan Uddin, AHAMMAD Rijwan Uddin, 張心健, EMRAN Hossen, EMRAN Hossen, 河谷昌泰, 吉見陽, 吉見陽, 呉敏華, 王緩緩, 王緩緩, 坪井大輔, 坪井大輔, 西岡朋生, 西岡朋生, 黒田啓介, 天野睦紀, 野田幸裕, 野田幸裕, 山田清文, 崎村建司, 永井拓, 山下貴之, 内野茂夫, 貝淵弘三, 貝淵弘三
    日本薬理学雑誌, 158(Supplement), 2023  
  • 松﨑 哲郎, 奥村 啓樹, 永井 拓, 山田 清文
    日本アルコール・薬物医学会雑誌, 56(2) 31-38, Apr, 2021  
  • Bolati Wulaer, Kazuo Kunisawa, Kazuhiro Hada, Willy Jaya Suento, Hisayoshi Kubota, Tsubasa Iida, Aika Kosuge, Taku Nagai, Kiyofumi Yamada, Atsumi Nitta, Yasuko Yamamoto, Kuniaki Saito, Akihiro Mouri, Toshitaka Nabeshima
    Journal of neurochemistry, 157(3) 642-655, Apr 10, 2020  
    Successful completion of daily activities relies on the ability to select the relevant features of the environment for memory and recall. Disruption to these processes can lead to various disorders, such as attention-deficit hyperactivity disorder (ADHD). Dopamine is a neurotransmitter implicated in the regulation of several processes, including attention. In addition to the higher-order brain function, dopamine is implicated in the regulation of adult neurogenesis. Previously, we generated mice lacking Shati, an N-acetyltransferase-8-like protein on a C57BL/6J genetic background (Shati/Nat8l-/- ). These mice showed a series of changes in the dopamine system and ADHD-like behavioral phenotypes. Therefore, we hypothesized that deficiency of Shati/Nat8l would affect neurogenesis and attentional behavior in mice. We found aberrant morphology of neurons and impaired neurogenesis in the dentate gyrus of Shati/Nat8l-/- mice. Additionally, research has suggested that impaired neurogenesis might be because of the reduction of dopamine in the hippocampus. Galantamine (GAL) attenuated the attentional impairment observed in the object-based attention test via increasing the dopamine release in the hippocampus of Shati/Nat8l-/- mice. The α7 nicotinic acetylcholine receptor antagonist, methyllycaconitine, and dopamine D1 receptor antagonist, SCH23390, blocked the ameliorating effect of GAL on attentional impairment in Shati/Nat8l-/- mice. These results suggest that the ameliorating effect of GAL on Shati/Nat8l-/- attentional impairment is associated with activation of D1 receptors following increased dopamine release in the hippocampus via α7 nicotinic acetylcholine receptor. In summary, Shati/Nat8l is important in both morphogenesis and neurogenesis in the dentate gyrus and attention, possible via modulation of dopaminergic transmission.
  • Yukako Nakamura, Masahiro Nakatochi, Shohko Kunimoto, Takashi Okada, Branko Aleksic, Miho Toyama, Tomoko Shiino, Mako Morikawa, Aya Yamauchi, Akira Yoshimi, Yoko Furukawa-Hibi, Taku Nagai, Masako Ohara, Chika Kubota, Kiyofumi Yamada, Masahiko Ando, Norio Ozaki
    BMC psychiatry, 19(1) 190-190, Jun 20, 2019  
    BACKGROUND: Postpartum depression (PPD) is a major depressive disorder that occurs after childbirth. Objective diagnostic and predictive methods for PPD are important for early detection and appropriate intervention. DNA methylation has been recognized as a potential biomarker for major depressive disorder. In this study, we used methylation analysis and peripheral blood to search for biomarkers that could to lead to the development a predictive method for PPD. METHODS: Study participants included 36 pregnant women (18 cases and 18 controls determined after childbirth). Genome-wide DNA methylation profiles were obtained by analysis with an Infinium Human Methylation 450BeadChip. The association of DNA methylation status at each DNA methylation site with PPD was assessed using linear regression analysis. We also conducted functional enrichment analysis of PPD using The Database for Annotation, Visualization and Integrated Discovery 6.8 to explore enriched functional-related gene groups for PPD. RESULTS: In the analysis with postpartum depressed state as an independent variable, the difference in methylation frequency between the postpartum non-depressed group and the postpartum depressed group was small, and sites with genome-wide significant differences were not confirmed. After analysis by The Database for Annotation, Visualization and Integrated Discovery 6.8, we revealed four gene ontology terms, including axon guidance, related to postpartum depression. CONCLUSIONS: These findings may help with the development of an objective predictive method for PPD.

Books and Other Publications

 1

Presentations

 19

Research Projects

 23

Other

 1
  • 統合失調症マーカー及びその利用, 尾崎紀夫, 永井拓, 吉見陽, 山田真之亮.「国立大学法人名古屋大学, 特許番号6252949, 出願番号 特願 2014-542025, 管理番号 C20130185JP#P01, 出願日2013.10.3., 特許取得2017.12.8.