医学部
基本情報
研究キーワード
3受賞
1-
2004年
論文
29-
International journal of molecular sciences 24(3) 2023年1月23日N6-methyladenosine (m6A) is a post-transcriptional modification of RNA involved in transcript transport, degradation, translation, and splicing. We found that HBV RNA is modified by m6A predominantly in the coding region of HBx. The mutagenesis of methylation sites reduced the HBV mRNA and HBs protein levels. The suppression of m6A by an inhibitor or knockdown in primary hepatocytes decreased the viral RNA and HBs protein levels in the medium. These results suggest that the m6A modification of HBV RNA is needed for the efficient replication of HBV in hepatocytes.
-
The Journal of biological chemistry 298(11) 102513-102513 2022年11月The human cytomegalovirus (HCMV) UL97 protein is a conserved herpesvirus protein kinase (CHPK) and a viral cyclin-dependent kinase (v-CDK). However, mechanisms regulating its activity in the context of infection are unknown. Here, we identified several cellular regulatory 14-3-3 proteins as UL97-interacting partners that promote UL97 stability. Humans are known to encode seven isoforms of 14-3-3 proteins (β, ε, η, γ, σ, θ, and ζ) that bind phosphoserines or phosphothreonines to impact protein structure, stability, activity, and localization. Our proteomic analysis of UL97 identified 49 interacting partners, including 14-3-3 isoforms β, η, and γ. Furthermore, coimmunoprecipitation with Western blotting assays demonstrated that UL97 interaction with 14-3-3 isoforms β, ε, η, γ, and θ occurs in a kinase activity-dependent manner. Using mutational analysis, we determined the serine residue at amino acid 13 of UL97 is crucial for 14-3-3 interaction. We demonstrate UL97 S13A (serine to alanine substitution at residue 13) retains kinase activity but the mutant protein accumulated at lower levels than WT UL97. Finally, we show both laboratory (AD169) and clinical (TB40/E) strains of HCMV encoding UL97 S13A replicated with WT kinetics in fibroblasts but showed decreased UL97 accumulation. Taken together, we conclude that 14-3-3 proteins interact with and stabilize UL97 during HCMV infection.
-
mBio e0097122 2022年7月20日Patients with severe coronavirus disease 2019 tend to have high levels of proinflammatory cytokines, which eventually lead to cytokine storm and the development of acute respiratory distress syndrome. However, the detailed molecular mechanisms of proinflammatory cytokine production remain unknown. Here, we screened severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes and found that nonstructural protein 6 (NSP6) and open reading frame 7a (ORF7a) activated the NF-κB pathway. NSP6 and ORF7a interacted with transforming growth factor β-activated kinase 1 (TAK1), and knockout (KO) of TAK1 or NF-κB essential modulator (NEMO) abolished NF-κB activation by NSP6 and ORF7a. Interestingly, K61 of NSP6 was conjugated to K63-linked polyubiquitin chains by the E3 ubiquitin ligase tripartite motif-containing 13, and this polyubiquitination of NSP6 appeared crucial for recruitment of NEMO to the NSP6-TAK1 complex and NF-κB activation. On the other hand, ring finger protein 121 (RNF121) was required for the polyubiquitination of ORF7a. Knockdown of RNF121 significantly decreased ORF7a binding of TAK1 and NEMO, resulting in the suppression of NF-κB activation. Taken together, our results provide novel molecular insights into the pathogenesis of SARS-CoV-2 and the host immune response to SARS-CoV-2 infection. IMPORTANCE The detailed molecular basis of the induction of proinflammatory cytokines and chemokines by SARS-CoV-2 is unclear, although such induction is clearly related to the severity of COVID-19. Here, we show that SARS-CoV-2 NSP6 and ORF7a lead to NF-κB activation through associations with TAK1. K63-linked polyubiquitination of NSP6 and ORF7a by TRIM13 and RNF121, respectively, appears essential for NF-κB activation. These results suggest that inhibition of the NSP6 and ORF7a gene products may reduce the severity of COVID-19 symptoms by decreasing proinflammatory cytokine levels.
-
Microbiology and immunology 65(1) 10-16 2021年1月Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Because complete elimination of SARS-CoV-2 appears difficult, decreasing the risk of transmission is important. Treatment with 0.1 and 0.05 ppm ozone gas for 10 and 20 hr, respectively, decreased SARS-CoV-2 infectivity by about 95%. The magnitude of the effect was dependent on humidity. Treatment with 1 and 2 mg/L ozone water for 10 s reduced SARS-CoV-2 infectivity by about 2 and 3 logs, respectively. Our results suggest that low-dose ozone, in the form of gas and water, is effective against SARS-CoV-2.
-
Direct Substrate Identification with an Analog Sensitive (AS) Viral Cyclin-Dependent Kinase (v-Cdk).ACS chemical biology 13(1) 189-199 2018年1月19日 査読有りViral cyclin-dependent kinases (v-Cdks) functionally emulate their cellular Cdk counterparts. Such viral mimicry is an established phenomenon that we extend here through chemical genetics. Kinases contain gatekeeper residues that limit the size of molecules that can be accommodated within the enzyme active site. Mutating gatekeeper residues to smaller amino acids allows larger molecules access to the active site. Such mutants can utilize bio-orthoganol ATPs for phosphate transfer and are inhibited by compounds ineffective against the wild type protein, and thus are referred to as analog-sensitive (AS) kinases. We identified the gatekeeper residues of the v-Cdks encoded by Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) and mutated them to generate AS kinases. The AS-v-Cdks are functional and utilize different ATP derivatives with a specificity closely matching their cellular ortholog, AS-Cdk2. The AS derivative of the EBV v-Cdk was used to transfer a thiolated phosphate group to targeted proteins which were then purified through covalent capture and identified by mass spectrometry. Pathway analysis of these newly identified direct substrates of the EBV v-Cdk extends the potential influence of this kinase into all stages of gene expression (transcription, splicing, mRNA export, and translation). Our work demonstrates the biochemical similarity of the cellular and viral Cdks, as well as the utility of AS v-Cdks for substrate identification to increase our understanding of both viral infections and Cdk biology.
MISC
3-
The Journal of general virology 85(Pt 10) 2857-2862 2004年10月 査読有りThe accumulation of cellular proliferating cell nuclear antigen (PCNA) in the nucleus of Sf9 cells has been shown to increase upon infection with Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Here, analysis by DNase I treatment and chromatin immunoprecipitation revealed that cellular PCNA in the nucleus of Sf9 cells bound AcMNPV DNA. Immunocytochemical analysis showed colocalization of Sf9 cell PCNA and AcMNPV DNA replication sites. Similar colocalization was also observed in BmN-4 cells infected with Bombyx mori NPV, which is inherently missing the pcna gene. The amount of cellular PCNA associated with viral DNA replication sites was greater in cells infected with pcna-defective AcMNPV mutants than in cells infected with wild-type AcMNPV. These results suggest that both cellular and viral PCNAs are involved in AcMNPV DNA replication and that pcna-defective AcMNPV mutants are able to substitute cellular PCNA for viral PCNA.
-
Jpurnal of Insect Biotechnology and Sericology 71(3) 129-139 2002年
-
J. Insect Biotechnology and Sericology 71(1) 25-34 2002年
所属学協会
1-
2019年8月 - 現在
共同研究・競争的資金等の研究課題
9-
日本学術振興会 科学研究費助成事業 2024年4月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2021年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 研究活動スタート支援 2019年4月 - 2020年3月
-
日本学術振興会 科学研究費助成事業 特定領域研究 2007年 - 2008年
-
日本学術振興会 科学研究費助成事業 特定領域研究 2006年 - 2007年