医学部

村田 貴之

ムラタ タカユキ  (Takayuki Murata)

基本情報

所属
藤田医科大学 医学部 ウイルス学 教授
名古屋大学大学院医学系研究科 招聘教員
学位
博士(医学)(名古屋大学)

J-GLOBAL ID
200901055677433687
researchmap会員ID
5000044336

経歴

 5

学歴

 2

論文

 140
  • Ken Sagou, Yoshitaka Sato, Yusuke Okuno, Takahiro Watanabe, Tomoki Inagaki, Yashiro Motooka, Shinya Toyokuni, Takayuki Murata, Hitoshi Kiyoi, Hiroshi Kimura
    PLoS pathogens 20(2) e1011954 2024年2月  
    Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus that is causally associated with several malignancies. In addition to latent factors, lytic replication contributes to cancer development. In this study, we examined whether the lytic gene BNRF1, which is conserved among gamma-herpesviruses, has an important role in lymphomagenesis. We found that lymphoblastoid cell lines (LCLs) established by BNRF1-knockout EBV exhibited remarkably lower pathogenicity in a mice xenograft model than LCLs produced by wild-type EBV (LCLs-WT). RNA-seq analyses revealed that BNRF1 elicited the expression of interferon-inducible protein 27 (IFI27), which promotes cell proliferation. IFI27 knockdown in LCLs-WT resulted in excessive production of reactive oxygen species, leading to cell death and significantly decreased their pathogenicity in vivo. We also confirmed that IFI27 was upregulated during primary infection in B-cells. Our findings revealed that BNRF1 promoted robust proliferation of the B-cells that were transformed by EBV latent infection via IFI27 upregulation both in vitro and in vivo.
  • Yuki Akari, Riona Hatazawa, Haruo Kuroki, Hiroaki Ito, Manami Negoro, Takaaki Tanaka, Haruna Miwa, Katsumi Sugiura, Masakazu Umemoto, Shigeki Tanaka, Masahiro Ogawa, Mitsue Ito, Saori Fukuda, Takayuki Murata, Kiyosu Taniguchi, Shigeru Suga, Hajime Kamiya, Takashi Nakano, Koki Taniguchi, Satoshi Komoto
    Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 115 105507-105507 2023年11月  
    Human rotavirus strains having the unconventional G3P[6] genotype have been sporadically detected in diarrheic patients in different parts of the world. However, the full genomes of only three human G3P[6] strains from Asian countries (China, Indonesia, and Vietnam) have been sequenced and characterized, and thus the exact origin and evolution of G3P[6] strains in Asia remain to be elucidated. Here, we sequenced and characterized the full genome of a G3P[6] strain (RVA/Human-wt/JPN/SO1199/2020/G3P[6]) found in a stool sample from a 3-month-old infant admitted with acute gastroenteritis in Japan. On full genomic analysis, strain SO1199 was revealed to have a unique Wa-like genogroup configuration: G3-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1. VP6 genotype I5 and NSP1 genotype A8 are commonly found in porcine rotavirus strains. Furthermore, phylogenetic analysis demonstrated that all 11 genes of strain SO1199 were closely related to those of porcine and/or porcine-like human rotaviruses and thus appeared to be of porcine origin. Thus, strain SO1199 was shown to possess a porcine-like genomic backbone and thus is likely to be the result of interspecies transmission of a porcine rotavirus strain. Of note is that all 11 genes of strain SO1199 were phylogenetically located in clusters, distinct from those of the previously identified porcine-like human G3P[6] strains from around the world including Asia, suggesting the occurrence of independent porcine-to-human zoonotic transmission events. To our knowledge, this is the first report on full genome-based characterization of a human G3P[6] strain that has emerged in Japan. Our findings revealed the diversity of unconventional human G3P[6] strains in Asia, and provide important insights into the origin and evolution of G3P[6] strains.
  • Atsuko Sugimoto, Takahiro Watanabe, Kazuhiro Matsuoka, Yusuke Okuno, Yusuke Yanagi, Yohei Narita, Seiyo Mabuchi, Hiroyuki Nobusue, Eiji Sugihara, Masaya Hirayama, Tomihiko Ide, Takanori Onouchi, Yoshitaka Sato, Teru Kanda, Hideyuki Saya, Yasumasa Iwatani, Hiroshi Kimura, Takayuki Murata
    Microbiology Spectrum 2023年7月6日  
    EBV infections cause nucleolar enlargement via the induction of IMPDH2, which are essential for B cell growth transformation by EBV. Although the significance of IMPDH2 induction and nuclear hypertrophy in the tumorigenesis of glioblastoma has been reported, EBV infection brings about the change quickly by using its transcriptional cofactor, EBNA2, and MYC. Moreover, we present here, for the novel, basic evidence that an IMPDH2 inhibitor, namely, MPA or MMF, can be used for EBV-positive posttransplant lymphoproliferative disorder (PTLD).
  • Md Kamal Uddin, Takahiro Watanabe, Masataka Arata, Yoshitaka Sato, Hiroshi Kimura, Takayuki Murata
    Journal of Virology 97(6) e0043723 2023年6月29日  
    Enveloped viruses undergo a complex multistep process of assembly, maturation, and release into the extracellular space utilizing host secretory machinery. Several studies of the herpesvirus subfamily have shown that secretory vesicles derived from the trans-Golgi network (TGN) or endosomes transport virions into the extracellular space. However, the regulatory mechanism underlying the release of Epstein-Barr virus, a human oncovirus, remains unclear. We demonstrate that disruption of BBLF1, a tegument component, suppressed viral release and resulted in the accumulation of viral particles on the inner side of the vesicular membrane. Organelle separation revealed the accumulation of infectious viruses in fractions containing vesicles derived from the TGN and late endosomes. Deficiency of an acidic amino acid cluster in BBLF1 reduced viral secretion. Moreover, truncational deletion of the C-terminal region of BBLF1 increased infectious virus production. These findings suggest that BBLF1 regulates the viral release pathway and reveal a new aspect of tegument protein function. IMPORTANCE Several viruses have been linked to the development of cancer in humans. Epstein-Barr virus (EBV), the first identified human oncovirus, causes a wide range of cancers. Accumulating literature has demonstrated the role of viral reactivation in tumorigenesis. Elucidating the functions of viral lytic genes induced by reactivation, and the mechanisms of lytic infection, is essential to understanding pathogenesis. Progeny viral particles synthesized during lytic infection are released outside the cell after the assembly, maturation, and release steps, leading to further infection. Through functional analysis using BBLF1-knockout viruses, we demonstrated that BBLF1 promotes viral release. The acidic amino acid cluster in BBLF1 was also important for viral release. Conversely, mutants lacking the C terminus exhibited more efficient virus production, suggesting that BBLF1 is involved in the fine-tuning of progeny release during the EBV life cycle.
  • Takayuki Murata
    Tumour Virus Research 15 200260-200260 2023年6月  
    The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.

MISC

 7

講演・口頭発表等

 2

担当経験のある科目(授業)

 1

共同研究・競争的資金等の研究課題

 16

その他

 2
  • Publonsに記載。
  • ①EBVの大腸菌内遺伝子組み換え ②CRISPR/Cas9によるEBVのゲノム編集 *本研究シーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進セン ター(fuji-san@fujita-hu.ac.jp)まで