研究支援推進本部

Shinichiro Taya

  (田谷 真一郎)

Profile Information

Affiliation
Associate professor, International Center for Brain Science, Fujita Health University
Degree
バイオサイエンス(博士)(奈良先端科学技術大学院大学)

J-GLOBAL ID
201101055618482176
researchmap Member ID
B000004750

External link

藤田医科大学・精神・神経病態解明センターで准教授をしております。
これまでに統合失調症、発達障害、てんかんなどの精神神経疾患の発症機序の解明というテーマで研究を進めています。手技的にはプロテオミクスの手法を用いて新たな分子間相互作用を明らかにして、各種疾患におけるシグナル伝達経路を解明しています。


Papers

 52
  • Ken-ichi Dewa, Nariko Arimura, Wataru Kakegawa, Masayuki Itoh, Toma Adachi, Satoshi Miyashita, Yukiko U. Inoue, Kento Hizawa, Kei Hori, Natsumi Honjoya, Haruya Yagishita, Shinichiro Taya, Taisuke Miyazaki, Chika Usui, Shoji Tatsumoto, Akiko Tsuzuki, Hirotomo Uetake, Kazuhisa Sakai, Kazuhiro Yamakawa, Takuya Sasaki, Jun Nagai, Yoshiya Kawaguchi, Masaki Sone, Takayoshi Inoue, Yasuhiro Go, Noritaka Ichinohe, Kozo Kaibuchi, Masahiko Watanabe, Schuichi Koizumi, Michisuke Yuzaki, Mikio Hoshino
    Nature Communications, 15(1), Feb 1, 2024  
    Abstract In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.
  • Keiya Iijima, Kanako Komatsu, Satoshi Miyashita, Kyoka Suyama, Kumiko Murayama, Koichi Hashizume, Nao K Tabe, Hajime Miyata, Masaki Iwasaki, Shinichiro Taya, Mikio Hoshino
    Genes to cells : devoted to molecular & cellular mechanisms, Jan 25, 2024  
    Low-grade neuroepithelial tumors are major causes of drug-resistant focal epilepsy. Clinically, these tumors are defined as low-grade epilepsy-associated neuroepithelial tumors (LEATs). The BRAF V600E mutation is frequently observed in LEAT and linked to poor seizure outcomes. However, its molecular role in epileptogenicity remains elusive. To understand the molecular mechanism underlying the epileptogenicity in LEAT with the BRAF V600E genetic mutation (BRAF V600E-LEAT), we conducted RNA sequencing (RNA-seq) analysis using surgical specimens of BRAF V600E-LEAT obtained and stored at a single institute. We obtained 21 BRAF V600E-LEAT specimens and 4 control specimens, including 24 from Japanese patients and 1 from a patient of Central Asian origin, along with comprehensive clinical data. We submitted the transcriptome dataset of 21 BRAF V600E-LEAT plus 4 controls, as well as detailed clinical information, to a public database. Preliminary bioinformatics analysis using this dataset identified 2134 differentially expressed genes between BRAF V600E-LEAT and control. Additionally, gene set enrichment analysis provided novel insights into the association between estrogen response-related pathways and the epileptogenicity of BRAF V600E-LEAT patients. Our datasets and findings will contribute toward the understanding of the pathology of epilepsy caused by LEAT and the identification of new therapeutic targets.
  • Tomoo Owa, Ryo Shiraishi, Toma Adachi, Satoshi Miyashita, Kentaro Ichijo, Tomoki Nishioka, Shinichiro Taya, Kozo Kaibuchi, Mikio Hoshino
    Aug 17, 2022  
    Abstract Granule cell progenitors (GCPs) and granule cells (GCs) in the cerebellum are excellent models for studying the differentiation of neural progenitors into neurons. Although gradual degradation of ATOH1 protein in GCPs leads to their differentiation into GCs, the underlying regulatory mechanism is unclear. We show that a homeodomain-less isoform of MEIS1 (MEIS1-HdL) regulates ATOH1 degradation and GCP differentiation in a transcriptional regulation-independent manner. BMP signaling phosphorylates Ser328 of ATOH1 via ERK. CUL3 was identified as an E3-ligase that polyubiquitinates Ser328 phosphorylated ATOH1, leading to ATOH1 degradation. MEIS1-HdL and full-length MEIS1 form a trimeric complex with CUL3 and COP9 signalosome that inhibits ATOH1 ubiquitination and degradation. MEIS1-HdL is exclusively expressed in GCPs and suppresses ATOH1 degradation and GCP differentiation into GCs, despite high BMP signaling activities in the cells. Our study provides insight into the precise regulatory machinery of the degradation of the pivotal protein ATOH1 and differentiation of neural progenitors.
  • Tomoo Owa, Ryo Shiraishi, Toma Adachi, Satoshi Miyashita, Kentaro Ichijo, Tomoki Nishioka, Shinichiro Taya, Kozo Kaibuchi, Mikio Hoshino
    Aug 17, 2022  
    Abstract Granule cell progenitors (GCPs) and granule cells (GCs) in the cerebellum are excellent models for studying the differentiation of neural progenitors into neurons. Although gradual degradation of ATOH1 protein in GCPs leads to their differentiation into GCs, the underlying regulatory mechanism is unclear. We show that a homeodomain-less isoform of MEIS1 (MEIS1-HdL) regulates ATOH1 degradation and GCP differentiation in a transcriptional regulation-independent manner. BMP signaling phosphorylates Ser328 of ATOH1 via ERK. CUL3 was identified as an E3-ligase that polyubiquitinates Ser328 phosphorylated ATOH1, leading to ATOH1 degradation. MEIS1-HdL and full-length MEIS1 form a trimeric complex with CUL3 and COP9 signalosome that inhibits ATOH1 ubiquitination and degradation. MEIS1-HdL is exclusively expressed in GCPs and suppresses ATOH1 degradation and GCP differentiation into GCs, despite high BMP signaling activities in the cells. Our study provides insight into the precise regulatory machinery of the degradation of the pivotal protein ATOH1 and differentiation of neural progenitors.
  • Satoshi Miyashita, Tomoo Owa, Yusuke Seto, Mariko Yamashita, Shogo Aida, Masaki Sone, Kentaro Ichijo, Tomoki Nishioka, Kozo Kaibuchi, Yoshiya Kawaguchi, Shinichiro Taya, Mikio Hoshino
    The EMBO Journal, 40(14), May 31, 2021  
    <title>Abstract</title>Here we report that CyclinD1 (CCND1) directly regulates both the proliferative and immature states of cerebellar granule cell progenitors (GCPs). CCND1 not only accelerates cell cycle but also upregulates ATOH1 protein, an essential transcription factor that maintains GCPs in an immature state. In cooperation with CDK4, CCND1 directly phosphorylates Ser309 of ATOH1, which inhibits additional phosphorylation at S328, consequently preventing Ser328 phosphorylation-dependent ATOH1 degradation. PROX1 downregulates Ccnd1 expression by histone-deacetylation of Ccnd1 promoter in GCPs, leading to cell cycle exit and differentiation. WNT signaling upregulates PROX1 expression in GCPs. These findings suggest that WNT-PROX1-CCND1-ATOH1 signaling cascade cooperatively controls proliferation and immaturity of GCPs. We revealed that the expression and phosphorylation levels of these molecules dynamically change during cerebellar development, which was suggested to determine appropriate differentiation rates from GCPs to GCs at distinct developmental stages. This study contributes to understanding the regulatory mechanism of GCPs as well as neural progenitors.

Misc.

 28

Research Projects

 15