研究者業績
基本情報
- 所属
- 藤田医科大学 先端ロボット・内視鏡手術学講座 教授
- 学位
- 博士(医学)(北海道大学)
- 連絡先
- yasuhiro.hida
fujita-hu.ac.jp - 研究者番号
- 30399919
- J-GLOBAL ID
- 201201007009119548
- researchmap会員ID
- B000226193
- 外部リンク
経歴
4-
2022年9月 - 現在
-
2015年10月 - 2022年8月
-
2005年12月 - 2015年9月
-
2001年3月 - 2005年5月
学歴
2-
1995年4月 - 2000年3月
-
1985年4月 - 1991年3月
論文
228-
Cancer medicine 13(23) e70462 2024年12月BACKGROUND: Inflammation is one of the hallmarks of cancer and is associated with tumor growth. Tumor endothelial cells (TECs) demonstrate inflamed phenotypes. Endothelial inflammation initiates thrombus formation, which is the second cause of cancer-related deaths. Epigallocatechin-3-O-gallate (EGCG), a natural compound in green tea, has demonstrated an anti-inflammatory effect. However, the tumor progression inhibition effect of EGCG by targeting TEC inflammation remains unclear. This study addresses the anti-tumor effect of EGCG, especially its anti-inflammatory role in TECs. METHODS: In vitro, the effect of EGCG on TECs were studied using real-time quantitative PCR and immunofluoresence to analyza gene and protein expression. In vivo, a cyclic RGD liposome delivery system (MEND) was employed to efficiently deliver EGCG to TECs in tumor-bearing mice. RESULTS: In vitro, EGCG significantly reduces inflammatory cytokine expression, including tumor necrosis factor-α, interleukin-6, IL-8, and IL-1β through NF-κB signaling inhibition. Additionally, von Willebrand factor reduction in TECs, which is involved in platelet adhesion and thrombosis formation, was analyzed. Our results revealed that EGCG-MEND significantly inhibited TEC inflammation and thrombus formation in tumors. Additionally, EGCG-MEND improved tumor immunity by reducing programmed death-ligand 1 expression and promoting high endothelial venule formation by recruiting CD8+ T cells. CONCLUSION: Our results indicate the anti-tumor potential of EGCG-MEND in normalizing the inflammatory immune microenvironment and inhibiting thrombosis by targeting TEC.
-
Translational lung cancer research 13(3) 603-611 2024年3月29日When performing thoracoscopic partial resections of nonpalpable lung tumors such as ground-glass opacities (GGOs) and small tumors, detecting the location of the lesion and assessing the resection margins can be challenging. We have developed a novel method to ease this difficulty, the One-stop Solution for a nonpalpable lung tumor, Marking, Resection, and Confirmation of the surgical margin in a Hybrid operating room (OS-MRCH), which uses a hybrid operating room wherein the operating table is seamlessly integrated with cone-beam computed tomography (CBCT). We performed the OS-MRCH method on 62 nodules including primary lung cancer presenting with GGO. Identification of the lesion and confirmation of the margin were performed in 58 of the cases, while nodules were detected in all. The frequency of computed tomography (CT) scans performed prior to resection was one time in 51 cases, two times in eight cases, and ≥3 times in three cases. Additional resection was performed in two cases. The median operative time was 85.0 minutes, and the median pathological margin was 11.0 mm. The key advantages of this method are that all surgical processes can be completed in a single session, specialized skill sets are not required, and it is feasible to perform in any facility equipped with a hybrid operating room. To overcome its disadvantages, such as longer operating time and limited patient positioning, we devised various methods for positioning patients and for CT imaging of the resected specimens. OS-MRCH is a simple, useful, and practical method for performing thoracoscopic partial resection of nonpalpable lung tumors.
-
日本病理学会会誌 113(1) 369-369 2024年2月
-
Cancer science 2023年12月14日Thrombosis is a well-known cardiovascular disease (CVD) complication that has caused death in many patients with cancer. Oral bacteria have been reported to contribute to systemic diseases, including CVDs, and tumor metastasis. However, whether oral bacteria-induced thrombosis induces tumor metastasis remains poorly understood. In this study, the cariogenic oral bacterium Streptococcus mutans was used to examine thrombosis in vitro and in vivo. Investigation of tumor metastasis to the lungs was undertaken by intravenous S. mutans implantation using a murine breast cancer metastasis model. The results indicated that platelet activation, aggregation, and coagulation were significantly altered in S. mutans-stimulated endothelial cells (ECs), with elevated neutrophil migration, thereby inducing thrombosis formation. Streptococcus mutans stimulation significantly enhances platelet and tumor cell adhesion to the inflamed ECs. Furthermore, S. mutans-induced pulmonary thrombosis promotes breast cancer cell metastasis to the lungs in vivo, which can be reduced by using aspirin, an antiplatelet drug. Our findings indicate that oral bacteria promote tumor metastasis through thrombosis formation. Oral health management is important to prevent CVDs, tumor metastasis, and their associated death.
MISC
737-
日本呼吸器外科学会雑誌 35(3) PD1-5 2021年5月
-
日本気胸・嚢胞性肺疾患学会雑誌 21(2) 2021年
-
The Quintessence 39(11) 2642-2650 2020年11月
共同研究・競争的資金等の研究課題
31-
日本学術振興会 科学研究費助成事業 2024年4月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 2024年6月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(A) 2021年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2021年4月 - 2024年3月