研究者業績

遠山 周吾

トオヤマ シュウゴ  (Shugo Tohyama)

基本情報

所属
藤田医科大学 先端医療研究センター 准教授
慶應義塾大学 医学部 非常勤講師
(兼任)理工学部 非常勤講師
学位
医学博士(慶應義塾大学)

J-GLOBAL ID
201701015467140157
researchmap会員ID
B000284421

研究キーワード

 5

学歴

 3

委員歴

 13

主要な論文

 83
  • Akari Masuda, Yuta Kurashina, Hidenori Tani, Yusuke Soma, Jumpei Muramatsu, Shun Itai, Shugo Tohyama, Hiroaki Onoe
    Advanced Healthcare Materials 2024年5月29日  査読有り責任著者
    Abstract Here an electrical stimulation system is described for maturing microfiber‐shaped cardiac tissue (cardiac microfibers, CMFs). The system enables stable culturing of CMFs with electrical stimulation by placing the tissue between electrodes. The electrical stimulation device provides an electric field covering whole CMFs within the stimulation area and can control the beating of the cardiac microfibers. In addition, CMFs under electrical stimulation with different frequencies are examined to evaluate the maturation levels by their sarcomere lengths, electrophysiological characteristics, and gene expression. Sarcomere elongation (14% increase compared to control) is observed at day 10, and a significant upregulation of electrodynamic properties such as gap junction protein alpha 1 (GJA1) and potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) (maximum fourfold increase compared to control) is observed at day 30. These results suggest that electrically stimulated cultures can accelerate the maturation of microfiber‐shaped cardiac tissues compared to those without electrical stimulation. This model will contribute to the pathological research of unexplained cardiac diseases and pharmacologic testing by stably constructing matured CMFs.
  • Hideki Kobayashi, Shugo Tohyama, Hajime Ichimura, Noburo Ohashi, Shuji Chino, Yusuke Soma, Hidenori Tani, Yuki Tanaka, Xiao Yang, Naoko Shiba, Shin Kadota, Kotaro Haga, Taijun Moriwaki, Yuika Morita-Umei, Tomohiko C Umei, Otoya Sekine, Yoshikazu Kishino, Hideaki Kanazawa, Hiroyuki Kawagishi, Mitsuhiko Yamada, Kazumasa Narita, Takafumi Naito, Tatsuichiro Seto, Koichiro Kuwahara, Yuji Shiba, Keiichi Fukuda
    Circulation 2024年4月26日  査読有り筆頭著者責任著者
    BACKGROUND: The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS: We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS: Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS: We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.
  • Taijun Moriwaki, Hidenori Tani, Kotaro Haga, Yuika Morita-Umei, Yusuke Soma, Tomohiko C. Umei, Otoya Sekine, Kaworu Takatsuna, Yoshikazu Kishino, Hideaki Kanazawa, Jun Fujita, Keiichi Fukuda, Shugo Tohyama, Masaki Ieda
    Cell Reports Methods 3(12) 100666-100666 2023年12月  査読有り責任著者
  • Yuta Kurashina, Keisuke Fukada, Shun Itai, Shuichi Akizuki, Ryo Sato, Akari Masuda, Hidenori Tani, Jun Fujita, Keiichi Fukuda, Shugo Tohyama, Hiroaki Onoe
    Advanced Science e2301831 2023年10月17日  査読有り責任著者
    In vitro reconstruction of highly mature engineered heart tissues (EHTs) is attempted for the selection of cardiotoxic drugs suitable for individual patients before administration. Mechanical contractile force generated in the EHTs is known to be a critical indicator for evaluating the EHT response. However, measuring contractile force requires anchoring the EHT in a tailored force-sensing cell culture chamber, causing technical difficulties in the stable evaluation of contractile force in long-term culture. This paper proposes a hydrogel-sheathed human induced pluripotent stem cell (hiPSC)-derived heart microtissue (H3 M) that can provide an anchor-free contractile force measurement platform in commonly used multi-well plates. The contractile force associated with tissue formation and drug response is calculated by motion tracking and finite element analysis on the bending angle of the hydrogel sheath. From the experiment of the drug response, H3 M is an excellent drug screening platform with high sensitivity and early testing capability compared to conventionally anchored EHT. This unique platform would be useful and versatile for regenerative therapy and drug discovery research in EHT.
  • Otoya Sekine, Sayaka Kanaami, Kanako Masumoto, Yuki Aihara, Yuika Morita-Umei, Hidenori Tani, Yusuke Soma, Tomohiko C Umei, Kotaro Haga, Taijun Moriwaki, Yujiro Kawai, Masatoshi Ohno, Yoshikazu Kishino, Hideaki Kanazawa, Keiichi Fukuda, Masaki Ieda, Shugo Tohyama
    Stem Cell Reports 2023年8月31日  査読有り最終著者責任著者
    Monitoring cardiac differentiation and maturation from human pluripotent stem cells (hPSCs) and detecting residual undifferentiated hPSCs are indispensable for the development of cardiac regenerative therapy. MicroRNA (miRNA) is secreted from cells into the extracellular space, and its role as a biomarker is attracting attention. Here, we performed an miRNA array analysis of supernatants during the process of cardiac differentiation and maturation from hPSCs. We demonstrated that the quantification of extracellular miR-489-3p and miR-1/133a-3p levels enabled the monitoring of mesoderm and cardiac differentiation, respectively, even in clinical-grade mass culture systems. Moreover, extracellular let-7c-5p levels showed the greatest increase with cardiac maturation during long-term culture. We also verified that residual undifferentiated hPSCs in hPSC-derived cardiomyocytes (hPSC-CMs) were detectable by measuring miR-302b-3p expression, with a detection sensitivity of 0.01%. Collectively, we demonstrate that our method of seamlessly monitoring specific miRNAs secreted into the supernatant is non-destructive and effective for the quality evaluation of hPSC-CMs.
  • Hidenori Tani, Eiji Kobayashi, Shinomi Yagi, Keisuke Tanaka, Kotaro Kameda-Haga, Shinsuke Shibata, Nobuko Moritoki, Kaworu Takatsuna, Taijun Moriwaki, Otoya Sekine, Tomohiko C Umei, Yuika Morita, Yusuke Soma, Yoshikazu Kishino, Hideaki Kanazawa, Jun Fujita, Shunji Hattori, Keiichi Fukuda, Shugo Tohyama
    Biomaterials 299 122174-122174 2023年8月  査読有り最終著者責任著者
    Although the extracellular matrix (ECM) plays essential roles in heart tissue engineering, the optimal ECM components for heart tissue organization have not previously been elucidated. Here, we focused on the main ECM component, fibrillar collagen, and analyzed the effects of collagens on heart tissue engineering, by comparing the use of porcine heart-derived collagen and other organ-derived collagens in generating engineered heart tissue (EHT). We demonstrate that heart-derived collagen induces better contraction and relaxation of human induced pluripotent stem cell-derived EHT (hiPSC-EHT) and that hiPSC-EHT with heart-derived collagen exhibit more mature profiles than those with collagens from other organs. Further, we found that collagen fibril formation and gel stiffness influence the contraction, relaxation, and maturation of hiPSC-EHT, suggesting the importance of collagen types III and type V, which are relatively abundant in the heart. Thus, we demonstrate the effectiveness of organ-specific collagens in tissue engineering and drug discovery.
  • Sho Tanosaki, Tomohiko Akiyama, Sayaka Kanaami, Jun Fujita, Minoru S H Ko, Keiichi Fukuda, Shugo Tohyama
    STAR Protocols 3(2) 101360-101360 2022年6月17日  査読有り最終著者責任著者
    Here we describe a protocol to obtain highly pure cardiomyocytes and neurons from human induced pluripotent stem cells (hiPSCs) via metabolic selection processes. Compared to conventional purification protocols, this approach is easier to perform and scale up and more cost-efficient. The protocol can be applied to hiPSCs and human embryonic stem cells. For complete details on the use and execution of this protocol, please refer to Tohyama et al. (2016) and Tanosaki et al. (2020).
  • Kotaro Kameda, Shota Someya, Jun Fujita, Keiichi Fukuda, Shugo Tohyama
    STAR Protocols 3(2) 101341-101341 2022年6月17日  査読有り最終著者責任著者
    We describe a protocol for the efficient culture of human pluripotent stem cells (hPSCs) by supplementing conventional culture medium with L-tryptophan (TRP). TRP is an essential amino acid that is widely available at an affordable cost, thereby allowing cost-effective proliferation of hPSCs compared to using a conventional medium alone. Here, we describe the steps for enhanced proliferation of hPSCs from dermal fibroblasts or peripheral blood cells, but the protocol can be applied to any hPSCs. For complete details on the use and execution of this protocol, please refer to Someya et al. (2021).
  • Shota Someya, Shugo Tohyama, Kotaro Kameda, Sho Tanosaki, Yuika Morita, Kazunori Sasaki, Moon-Il Kang, Yoshikazu Kishino, Marina Okada, Hidenori Tani, Yusuke Soma, Kazuaki Nakajima, Tomohiko Umei, Otoya Sekine, Taijun Moriwaki, Hideaki Kanazawa, Eiji Kobayashi, Jun Fujita, Keiichi Fukuda
    iScience 24(2) 102090-102090 2021年2月19日  査読有り責任著者
    Human pluripotent stem cells (hPSCs) have a unique metabolic signature for maintenance of pluripotency, self-renewal, and survival. Although hPSCs could be potentially used in regenerative medicine, the prohibitive cost associated with large-scale cell culture presents a major barrier to the clinical application of hPSC. Moreover, without a fully characterized metabolic signature, hPSC culture conditions are not optimized. Here, we performed detailed amino acid profiling and found that tryptophan (TRP) plays a key role in the proliferation with maintenance of pluripotency. In addition, metabolome analyses revealed that intra- and extracellular kynurenine (KYN) is decreased under TRP-supplemented conditions, whereas N-formylkynurenine (NFK), the upstream metabolite of KYN, is increased thereby contributing to proliferation promotion. Taken together, we demonstrate that TRP is indispensable for survival and proliferation of hPSCs. A deeper understanding of TRP metabolism will enable cost-effective large-scale production of hPSCs, leading to advances in regenerative medicine.
  • Sho Tanosaki, Shugo Tohyama, Jun Fujita, Shota Someya, Takako Hishiki, Tomomi Matsuura, Hiroki Nakanishi, Takayo Ohto-Nakanishi, Tomohiko Akiyama, Yuika Morita, Yoshikazu Kishino, Marina Okada, Hidenori Tani, Yusuke Soma, Kazuaki Nakajima, Hideaki Kanazawa, Masahiro Sugimoto, Minoru S H Ko, Makoto Suematsu, Keiichi Fukuda
    iScience 23(9) 101535-101535 2020年9月25日  査読有り責任著者
    The role of lipid metabolism in human pluripotent stem cells (hPSCs) is poorly understood. We have used large-scale targeted proteomics to demonstrate that undifferentiated hPSCs express different fatty acid (FA) biosynthesis-related enzymes, including ATP citrate lyase and FA synthase (FASN), than those expressed in hPSC-derived cardiomyocytes (hPSC-CMs). Detailed lipid profiling revealed that inhibition of FASN resulted in significant reduction of sphingolipids and phosphatidylcholine (PC); moreover, we found that PC was the key metabolite for cell survival in hPSCs. Inhibition of FASN induced cell death in undifferentiated hPSCs via mitochondria-mediated apoptosis; however, it did not affect cell survival in hPSC-CMs, neurons, or hepatocytes as there was no significant reduction of PC. Furthermore, we did not observe tumor formation following transplantation of FASN inhibitor-treated cells. Our findings demonstrate the importance of de novo FA synthesis in the survival of undifferentiated hPSCs and suggest applications for FASN inhibition in regenerative medicine.
  • Shugo Tohyama, Jun Fujita, Chihana Fujita, Miho Yamaguchi, Sayaka Kanaami, Rei Ohno, Kazuho Sakamoto, Masami Kodama, Junko Kurokawa, Hideaki Kanazawa, Tomohisa Seki, Yoshikazu Kishino, Marina Okada, Kazuaki Nakajima, Sho Tanosaki, Shota Someya, Akinori Hirano, Shinji Kawaguchi, Eiji Kobayashi, Keiichi Fukuda
    Stem Cell Reports 9(5) 1406-1414 2017年11月14日  査読有り筆頭著者
    Cardiac regenerative therapies utilizing human induced pluripotent stem cells (hiPSCs) are hampered by ineffective large-scale culture. hiPSCs were cultured in multilayer culture plates (CPs) with active gas ventilation (AGV), resulting in stable proliferation and pluripotency. Seeding of 1 × 106 hiPSCs per layer yielded 7.2 × 108 hiPSCs in 4-layer CPs and 1.7 × 109 hiPSCs in 10-layer CPs with pluripotency. hiPSCs were sequentially differentiated into cardiomyocytes (CMs) in a two-dimensional (2D) differentiation protocol. The efficiency of cardiac differentiation using 10-layer CPs with AGV was 66%-87%. Approximately 6.2-7.0 × 108 cells (4-layer) and 1.5-2.8 × 109 cells (10-layer) were obtained with AGV. After metabolic purification with glucose- and glutamine-depleted and lactate-supplemented media, a massive amount of purified CMs was prepared. Here, we present a scalable 2D culture system using multilayer CPs with AGV for hiPSC-derived CMs, which will facilitate clinical applications for severe heart failure in the near future.
  • Shugo Tohyama, Keiichi Fukuda
    Circulation Research 120(10) 1558-1560 2017年5月12日  査読有り筆頭著者責任著者
    A clinical study on human-induced pluripotent stem cells (hiPSCs) is underway in the ophthalmic field, and patients with advanced heart failure will be among the next targets for cell transplantation with hiPSCs. Although many approaches for production of hiPSC-derived cardiac myocytes (hiPSC-CMs) have been developed, numerous hurdles must be overcome to achieve safe and effective cardiac regenerative therapy (CRT).
  • Shugo Tohyama, Jun Fujita, Takako Hishiki, Tomomi Matsuura, Fumiyuki Hattori, Rei Ohno, Hideaki Kanazawa, Tomohisa Seki, Kazuaki Nakajima, Yoshikazu Kishino, Marina Okada, Akinori Hirano, Takuya Kuroda, Satoshi Yasuda, Yoji Sato, Shinsuke Yuasa, Motoaki Sano, Makoto Suematsu, Keiichi Fukuda
    Cell Metabolism 23(4) 663-74 2016年4月12日  査読有り筆頭著者
    Human pluripotent stem cells (hPSCs) are uniquely dependent on aerobic glycolysis to generate ATP. However, the importance of oxidative phosphorylation (OXPHOS) has not been elucidated. Detailed amino acid profiling has revealed that glutamine is indispensable for the survival of hPSCs. Under glucose- and glutamine-depleted conditions, hPSCs quickly died due to the loss of ATP. Metabolome analyses showed that hPSCs oxidized pyruvate poorly and that glutamine was the main energy source for OXPHOS. hPSCs were unable to utilize pyruvate-derived citrate due to negligible expression of aconitase 2 (ACO2) and isocitrate dehydrogenase 2/3 (IDH2/3) and high expression of ATP-citrate lyase. Cardiomyocytes with mature mitochondria were not able to survive without glucose and glutamine, although they were able to use lactate to synthesize pyruvate and glutamate. This distinguishing feature of hPSC metabolism allows preparation of clinical-grade cell sources free of undifferentiated hPSCs, which prevents tumor formation during stem cell therapy.
  • Shugo Tohyama, Fumiyuki Hattori, Motoaki Sano, Takako Hishiki, Yoshiko Nagahata, Tomomi Matsuura, Hisayuki Hashimoto, Tomoyuki Suzuki, Hiromi Yamashita, Yusuke Satoh, Toru Egashira, Tomohisa Seki, Naoto Muraoka, Hiroyuki Yamakawa, Yasuyuki Ohgino, Tomofumi Tanaka, Masatoshi Yoichi, Shinsuke Yuasa, Mitsushige Murata, Makoto Suematsu, Keiichi Fukuda
    Cell Stem Cell 12(1) 127-37 2013年1月3日  査読有り筆頭著者
    Heart disease remains a major cause of death despite advances in medical technology. Heart-regenerative therapy that uses pluripotent stem cells (PSCs) is a potentially promising strategy for patients with heart disease, but the inability to generate highly purified cardiomyocytes in sufficient quantities has been a barrier to realizing this potential. Here, we report a nongenetic method for mass-producing cardiomyocytes from mouse and human PSC derivatives that is based on the marked biochemical differences in glucose and lactate metabolism between cardiomyocytes and noncardiomyocytes, including undifferentiated cells. We cultured PSC derivatives with glucose-depleted culture medium containing abundant lactate and found that only cardiomyocytes survived. Using this approach, we obtained cardiomyocytes of up to 99% purity that did not form tumors after transplantation. We believe that our technological method broadens the range of potential applications for purified PSC-derived cardiomyocytes and could facilitate progress toward PSC-based cardiac regenerative therapy.
  • Fumiyuki Hattori, Hao Chen, Hiromi Yamashita, Shugo Tohyama, Yu-Suke Satoh, Shinsuke Yuasa, Weizhen Li, Hiroyuki Yamakawa, Tomofumi Tanaka, Takeshi Onitsuka, Kenichiro Shimoji, Yohei Ohno, Toru Egashira, Ruri Kaneda, Mitsushige Murata, Kyoko Hidaka, Takayuki Morisaki, Erika Sasaki, Takeshi Suzuki, Motoaki Sano, Shinji Makino, Shinzo Oikawa, Keiichi Fukuda
    Nature methods 7(1) 61-6 2010年1月  査読有り
    Several applications of pluripotent stem cell (PSC)-derived cardiomyocytes require elimination of undifferentiated cells. A major limitation for cardiomyocyte purification is the lack of easy and specific cell marking techniques. We found that a fluorescent dye that labels mitochondria, tetramethylrhodamine methyl ester perchlorate, could be used to selectively mark embryonic and neonatal rat cardiomyocytes, as well as mouse, marmoset and human PSC-derived cardiomyocytes, and that the cells could subsequently be enriched (>99% purity) by fluorescence-activated cell sorting. Purified cardiomyocytes transplanted into testes did not induce teratoma formation. Moreover, aggregate formation of PSC-derived cardiomyocytes through homophilic cell-cell adhesion improved their survival in the immunodeficient mouse heart. Our approaches will aid in the future success of using PSC-derived cardiomyocytes for basic and clinical applications.

MISC

 78

講演・口頭発表等

 78

共同研究・競争的資金等の研究課題

 20

産業財産権

 14