医学部 乳腺外科
Profile Information
- Affiliation
- Professor, Fujita Medical Innovation Center Tokyo, Fujita Health UniversityProject Leader, Kanagawa Institute of Industrial Science and TechnologyVisiting Professor, Team Leader, School of Medicine, Keio University
- Degree
- PhD(Keio University)
- J-GLOBAL ID
- 201701015467140157
- researchmap Member ID
- B000284421
- External link
Research Areas
2Research History
15-
Dec, 2025 - Present
-
Apr, 2025 - Dec, 2025
-
Apr, 2025 - Present
-
Nov, 2024 - Dec, 2025
-
Nov, 2024 - Present
Education
3-
Apr, 2008 - Mar, 2013
-
Apr, 2000 - Mar, 2006
-
Apr, 1997 - Mar, 2000
Committee Memberships
20-
Aug, 2025 - Present
-
Aug, 2025 - Present
-
Jun, 2025 - Present
-
Apr, 2025 - Present
-
Apr, 2025 - Present
Major Awards
15-
Jun, 2023
-
Oct, 2021
-
Nov, 2019
-
Apr, 2019
-
Apr, 2018
-
Mar, 2017
-
Mar, 2013
-
Mar, 2011
Major Papers
78-
iScience, 28(7) 112843-112843, Jul 18, 2025 Peer-reviewedLead authorCorresponding authorHuman pluripotent stem cell-derived cardiomyocyte (hPSC-CM) differentiation can improve using chemical compounds which mimic early heart development. However, variations in hPSC-CM differentiation efficiency and its poor reproducibility have remained a challenge. Here, we report a unique metabolic method to promote hPSC-CM differentiation that involves marked suppression of the mitochondrial oxidative phosphorylation from the mesendoderm to the cardiac mesoderm, which is regulated by PHGDH, a rate-limiting enzyme in the serine synthesis pathway. Mechanistically, PHGDH inhibition impairs mitochondrial respiration by blocking the electron transport chain, resulting in elevated ROS levels and promoting the cardiomyocyte lineage specification by disrupting the cardiopharyngeal mesoderm lineage differentiation. Additionally, antioxidant supplementation can scavenge ROS and eliminate the effects of PHGDH inhibition. Collectively, our findings show that serine synthesis pathway can regulate cardiomyocyte lineage specification and have implications in providing a cellular source for transplantation and elucidating the potential mechanisms of heart development and pathogenesis of heart disease.
-
iScience, 27(11) 111234-111234, Nov, 2024 Peer-reviewedCorresponding author
-
Advanced healthcare materials, 13(27) e2303477, Oct, 2024 Peer-reviewedCorresponding authorAbstract Here an electrical stimulation system is described for maturing microfiber‐shaped cardiac tissue (cardiac microfibers, CMFs). The system enables stable culturing of CMFs with electrical stimulation by placing the tissue between electrodes. The electrical stimulation device provides an electric field covering whole CMFs within the stimulation area and can control the beating of the cardiac microfibers. In addition, CMFs under electrical stimulation with different frequencies are examined to evaluate the maturation levels by their sarcomere lengths, electrophysiological characteristics, and gene expression. Sarcomere elongation (14% increase compared to control) is observed at day 10, and a significant upregulation of electrodynamic properties such as gap junction protein alpha 1 (GJA1) and potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) (maximum fourfold increase compared to control) is observed at day 30. These results suggest that electrically stimulated cultures can accelerate the maturation of microfiber‐shaped cardiac tissues compared to those without electrical stimulation. This model will contribute to the pathological research of unexplained cardiac diseases and pharmacologic testing by stably constructing matured CMFs.
-
Circulation, 150(8) 611-621, Aug 20, 2024 Peer-reviewedLead authorCorresponding authorBACKGROUND: The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS: We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS: Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS: We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.
-
Cell Reports Methods, 3(12) 100666-100666, Dec, 2023 Peer-reviewedCorresponding author
-
Hydrogel-Sheathed HiPSC-Derived Heart Microtissue Enables Anchor-Free Contractile Force Measurement.Advanced Science, e2301831, Oct 17, 2023 Peer-reviewedCorresponding authorIn vitro reconstruction of highly mature engineered heart tissues (EHTs) is attempted for the selection of cardiotoxic drugs suitable for individual patients before administration. Mechanical contractile force generated in the EHTs is known to be a critical indicator for evaluating the EHT response. However, measuring contractile force requires anchoring the EHT in a tailored force-sensing cell culture chamber, causing technical difficulties in the stable evaluation of contractile force in long-term culture. This paper proposes a hydrogel-sheathed human induced pluripotent stem cell (hiPSC)-derived heart microtissue (H3 M) that can provide an anchor-free contractile force measurement platform in commonly used multi-well plates. The contractile force associated with tissue formation and drug response is calculated by motion tracking and finite element analysis on the bending angle of the hydrogel sheath. From the experiment of the drug response, H3 M is an excellent drug screening platform with high sensitivity and early testing capability compared to conventionally anchored EHT. This unique platform would be useful and versatile for regenerative therapy and drug discovery research in EHT.
-
Stem Cell Reports, Aug 31, 2023 Peer-reviewedLast authorCorresponding authorMonitoring cardiac differentiation and maturation from human pluripotent stem cells (hPSCs) and detecting residual undifferentiated hPSCs are indispensable for the development of cardiac regenerative therapy. MicroRNA (miRNA) is secreted from cells into the extracellular space, and its role as a biomarker is attracting attention. Here, we performed an miRNA array analysis of supernatants during the process of cardiac differentiation and maturation from hPSCs. We demonstrated that the quantification of extracellular miR-489-3p and miR-1/133a-3p levels enabled the monitoring of mesoderm and cardiac differentiation, respectively, even in clinical-grade mass culture systems. Moreover, extracellular let-7c-5p levels showed the greatest increase with cardiac maturation during long-term culture. We also verified that residual undifferentiated hPSCs in hPSC-derived cardiomyocytes (hPSC-CMs) were detectable by measuring miR-302b-3p expression, with a detection sensitivity of 0.01%. Collectively, we demonstrate that our method of seamlessly monitoring specific miRNAs secreted into the supernatant is non-destructive and effective for the quality evaluation of hPSC-CMs.
-
Biomaterials, 299 122174-122174, Aug, 2023 Peer-reviewedLast authorCorresponding authorAlthough the extracellular matrix (ECM) plays essential roles in heart tissue engineering, the optimal ECM components for heart tissue organization have not previously been elucidated. Here, we focused on the main ECM component, fibrillar collagen, and analyzed the effects of collagens on heart tissue engineering, by comparing the use of porcine heart-derived collagen and other organ-derived collagens in generating engineered heart tissue (EHT). We demonstrate that heart-derived collagen induces better contraction and relaxation of human induced pluripotent stem cell-derived EHT (hiPSC-EHT) and that hiPSC-EHT with heart-derived collagen exhibit more mature profiles than those with collagens from other organs. Further, we found that collagen fibril formation and gel stiffness influence the contraction, relaxation, and maturation of hiPSC-EHT, suggesting the importance of collagen types III and type V, which are relatively abundant in the heart. Thus, we demonstrate the effectiveness of organ-specific collagens in tissue engineering and drug discovery.
-
iScience, 24(2) 102090-102090, Feb 19, 2021 Peer-reviewedCorresponding authorHuman pluripotent stem cells (hPSCs) have a unique metabolic signature for maintenance of pluripotency, self-renewal, and survival. Although hPSCs could be potentially used in regenerative medicine, the prohibitive cost associated with large-scale cell culture presents a major barrier to the clinical application of hPSC. Moreover, without a fully characterized metabolic signature, hPSC culture conditions are not optimized. Here, we performed detailed amino acid profiling and found that tryptophan (TRP) plays a key role in the proliferation with maintenance of pluripotency. In addition, metabolome analyses revealed that intra- and extracellular kynurenine (KYN) is decreased under TRP-supplemented conditions, whereas N-formylkynurenine (NFK), the upstream metabolite of KYN, is increased thereby contributing to proliferation promotion. Taken together, we demonstrate that TRP is indispensable for survival and proliferation of hPSCs. A deeper understanding of TRP metabolism will enable cost-effective large-scale production of hPSCs, leading to advances in regenerative medicine.
-
iScience, 23(9) 101535-101535, Sep 25, 2020 Peer-reviewedCorresponding authorThe role of lipid metabolism in human pluripotent stem cells (hPSCs) is poorly understood. We have used large-scale targeted proteomics to demonstrate that undifferentiated hPSCs express different fatty acid (FA) biosynthesis-related enzymes, including ATP citrate lyase and FA synthase (FASN), than those expressed in hPSC-derived cardiomyocytes (hPSC-CMs). Detailed lipid profiling revealed that inhibition of FASN resulted in significant reduction of sphingolipids and phosphatidylcholine (PC); moreover, we found that PC was the key metabolite for cell survival in hPSCs. Inhibition of FASN induced cell death in undifferentiated hPSCs via mitochondria-mediated apoptosis; however, it did not affect cell survival in hPSC-CMs, neurons, or hepatocytes as there was no significant reduction of PC. Furthermore, we did not observe tumor formation following transplantation of FASN inhibitor-treated cells. Our findings demonstrate the importance of de novo FA synthesis in the survival of undifferentiated hPSCs and suggest applications for FASN inhibition in regenerative medicine.
-
Stem Cell Reports, 9(5) 1406-1414, Nov 14, 2017 Peer-reviewedLead authorCardiac regenerative therapies utilizing human induced pluripotent stem cells (hiPSCs) are hampered by ineffective large-scale culture. hiPSCs were cultured in multilayer culture plates (CPs) with active gas ventilation (AGV), resulting in stable proliferation and pluripotency. Seeding of 1 × 106 hiPSCs per layer yielded 7.2 × 108 hiPSCs in 4-layer CPs and 1.7 × 109 hiPSCs in 10-layer CPs with pluripotency. hiPSCs were sequentially differentiated into cardiomyocytes (CMs) in a two-dimensional (2D) differentiation protocol. The efficiency of cardiac differentiation using 10-layer CPs with AGV was 66%-87%. Approximately 6.2-7.0 × 108 cells (4-layer) and 1.5-2.8 × 109 cells (10-layer) were obtained with AGV. After metabolic purification with glucose- and glutamine-depleted and lactate-supplemented media, a massive amount of purified CMs was prepared. Here, we present a scalable 2D culture system using multilayer CPs with AGV for hiPSC-derived CMs, which will facilitate clinical applications for severe heart failure in the near future.
-
Circulation Research, 120(10) 1558-1560, May 12, 2017 Peer-reviewedLead authorCorresponding author
-
Cell Metabolism, 23(4) 663-74, Apr 12, 2016 Peer-reviewedLead author
-
Cell Stem Cell, 12(1) 127-37, Jan 3, 2013 Peer-reviewedLead authorHeart disease remains a major cause of death despite advances in medical technology. Heart-regenerative therapy that uses pluripotent stem cells (PSCs) is a potentially promising strategy for patients with heart disease, but the inability to generate highly purified cardiomyocytes in sufficient quantities has been a barrier to realizing this potential. Here, we report a nongenetic method for mass-producing cardiomyocytes from mouse and human PSC derivatives that is based on the marked biochemical differences in glucose and lactate metabolism between cardiomyocytes and noncardiomyocytes, including undifferentiated cells. We cultured PSC derivatives with glucose-depleted culture medium containing abundant lactate and found that only cardiomyocytes survived. Using this approach, we obtained cardiomyocytes of up to 99% purity that did not form tumors after transplantation. We believe that our technological method broadens the range of potential applications for purified PSC-derived cardiomyocytes and could facilitate progress toward PSC-based cardiac regenerative therapy.
-
Nature methods, 7(1) 61-6, Jan, 2010 Peer-reviewedSeveral applications of pluripotent stem cell (PSC)-derived cardiomyocytes require elimination of undifferentiated cells. A major limitation for cardiomyocyte purification is the lack of easy and specific cell marking techniques. We found that a fluorescent dye that labels mitochondria, tetramethylrhodamine methyl ester perchlorate, could be used to selectively mark embryonic and neonatal rat cardiomyocytes, as well as mouse, marmoset and human PSC-derived cardiomyocytes, and that the cells could subsequently be enriched (>99% purity) by fluorescence-activated cell sorting. Purified cardiomyocytes transplanted into testes did not induce teratoma formation. Moreover, aggregate formation of PSC-derived cardiomyocytes through homophilic cell-cell adhesion improved their survival in the immunodeficient mouse heart. Our approaches will aid in the future success of using PSC-derived cardiomyocytes for basic and clinical applications.
Misc.
78Presentations
87Teaching Experience
4-
Apr, 2021 - Present
-
Sep, 2019 - Mar, 2024
-
Dec, 2022 - Mar, 2023
-
Apr, 2020 - Nov, 2021
Professional Memberships
8Research Projects
24-
科学研究費助成事業, 日本学術振興会, Jun, 2025 - Mar, 2029
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2024 - Mar, 2029
-
科学研究費助成事業, 日本学術振興会, Apr, 2023 - Mar, 2026
-
科学研究費助成事業, 日本学術振興会, Apr, 2023 - Mar, 2026
-
再生・細胞医療・遺伝子治療実現加速化プログラム, 日本医療研究開発機構, Jun, 2024 - Mar, 2026