Curriculum Vitaes

Takayuki Yamashita

  (山下 貴之)

Profile Information

Affiliation
Professor, Department of Physiology School of Medicine, Fujita Health University
(Concurrent)Professor, Department of Neurophysiology, Graduate School of Medicine
(Concurrent)Professor, Division of Neurophysiology, International Center for Brain Science
Degree
Ph.D.(Mar, 2007, The university of Tokyo)

J-GLOBAL ID
200901070286622131
researchmap Member ID
6000003393

External link

I am currently investigating how information flows among brain circuits to coordinate animal behaviour. I am enjoying an exciting time when we can tackle basic questions on neuronal coding and circuit algorithm directly in awake behaving animals with cellular resolution in a cell-type specific manner.


Papers

 22
  • Yusuke Fujioka, Kaori Kawai, Kuniyuki Endo, Minaka Ishibashi, Nobuyuki Iwade, Dilina Tuerde, Kozo Kaibuchi, Takayuki Yamashita, Akihiro Yamanaka, Masahisa Katsuno, Hirohisa Watanabe, Gen Sobue, Shinsuke Ishigaki
    Frontiers in Neuroscience, 18, May 9, 2024  Peer-reviewed
    Although dietary behaviors are affected by neuropsychiatric disorders, various environmental conditions can have strong effects as well. We found that mice under multiple stresses, including social isolation, intermittent high-fat diet, and physical restraint, developed feeding behavior patterns characterized by a deviated bait approach (fixated feeding). All the tested stressors affected dopamine release at the nucleus accumbens (NAcc) shell and dopamine normalization reversed the feeding defects. Moreover, inhibition of dopaminergic activity in the ventral tegmental area that projects into the NAcc shell caused similar feeding pattern aberrations. Given that the deviations were not consistently accompanied by changes in the amount consumed or metabolic factors, the alterations in feeding behaviors likely reflect perturbations to a critical stress-associated pathway in the mesolimbic dopamine system. Thus, deviations in feeding behavior patterns that reflect reward system abnormalities can be sensitive biomarkers of psychosocial and physical stress.
  • Masahiro Kawatani, Kayo Horio, Mahito Ohkuma, Wan-Ru Li, Takayuki Yamashita
    The Journal of Neuroscience, Dec 1, 2023  Peer-reviewedLast authorCorresponding author
    Body movements influence brain-wide neuronal activities. In the sensory cortex, thalamocortical bottom-up inputs and motor-sensory top-down inputs are thought to affect the dynamics of membrane potentials (Vm) of neurons and change their processing of sensory information during movements. However, direct perturbation of the axons projecting to the sensory cortex from other remote areas during movements has remained unassessed, and therefore the interareal circuits generating motor-related signals in sensory cortices remain unclear. Using a Gi-coupled opsin, eOPN3, we here inhibited interareal signals incoming to the whisker primary somatosensory barrel cortex (wS1) of awake male mice and tested their effects on whisking-related changes in neuronal activities in wS1. Spontaneous whisking in air induced the changes in spike rates of a fraction of wS1 neurons, which were accompanied by depolarization and substantial reduction of slow-wave oscillatory fluctuations of Vm. Despite an extensive innervation, inhibition of inputs from the whisker primary motor cortex (wM1) to wS1 did not alter the spike rates and Vmdynamics of wS1 neurons during whisking. In contrast, inhibition of axons from the whisker-related thalamus (wTLM) and the whisker secondary somatosensory cortex (wS2) to wS1 largely attenuated the whisking-related supra- and sub-threshold Vmdynamics of wS1 neurons. Notably, silencing inputs from wTLM markedly decreased the modulation depth of whisking phase-tuned neurons, while inhibiting wS2 inputs did not impact the whisking variable tuning of wS1 neurons. Thus, sensorimotor integration in wS1 during spontaneous whisking is predominantly facilitated by direct synaptic inputs from wTLM and wS2 rather than from wM1. Significance statementThe traditional viewpoint underscores the importance of motor-sensory projections in shaping movement-induced neuronal activity within sensory cortices. However, this study challenges such established views. We reveal that the synaptic inputs from the whisker primary motor cortex do not alter the activity patterns and membrane potential dynamics of neurons in the whisker primary somatosensory cortex (wS1) during spontaneous whisker movements. Furthermore, we make a novel observation that inhibiting inputs from the whisker secondary somatosensory cortex (wS2) substantially curtails movement-related activities in wS1, leaving the tuning to whisking variables unaffected. These findings provoke a reconsideration of the role of motor-sensory projections in sensorimotor integration and bring to light a new function for wS2-to-wS1 projections.
  • Wan-Ru Li, Takashi Nakano, Kohta Mizutani, Takanori Matsubara, Masahiro Kawatani, Yasutaka Mukai, Teruko Danjo, Hikaru Ito, Hidenori Aizawa, Akihiro Yamanaka, Carl C.H. Petersen, Junichiro Yoshimoto, Takayuki Yamashita
    Current Biology, Aug, 2023  Peer-reviewedLast authorCorresponding author
  • Masahiro Kawatani, William C. de Groat, Keiichi Itoi, Katsuya Uchida, Kenji Sakimura, Akihiro Yamanaka, Takayuki Yamashita, Masahito Kawatani
    Journal of Neurophysiology, 126(6) 1959-1977, Dec 1, 2021  Peer-reviewed
    Photostimulation of BarCRH or BarESR1 axons in the adult mouse spinal cord elicits excitatory or inhibitory postsynaptic responses in multiple cell types related to the autonomic nervous system including preganglionic neurons (PGNs) in the lumbosacral intermediolateral nucleus and interneurons in the lumbosacral dorsal commissure nucleus. Integration of excitatory inputs from Bar and from visceral primary afferents in PGNs may be important in the regulation of micturition behavior.
  • Takanori Matsubara, Takayuki Yamashita
    Frontiers in Molecular Biosciences, 8(771717) 771717-771717, Nov 5, 2021  Peer-reviewedInvitedLast authorCorresponding author
    Microbial rhodopsins widely used for optogenetics are sensitive to light in the visible spectrum. As visible light is heavily scattered and absorbed by tissue, stimulating light for optogenetic control does not reach deep in the tissue irradiated from outside the subject body. Conventional optogenetics employs fiber optics inserted close to the target, which is highly invasive and poses various problems for researchers. Recent advances in material science integrated with neuroscience have enabled remote optogenetic control of neuronal activities in living animals using up- or down-conversion phosphors. The development of these methodologies has stimulated researchers to test novel strategies for less invasive, wireless control of cellular functions in the brain and other tissues. Here, we review recent reports related to these new technologies and discuss the current limitations and future perspectives toward the establishment of non-invasive optogenetics for clinical applications.
  • Takanori Matsubara, Takayuki Yanagida, Noriaki Kawaguchi, Takashi Nakano, Junichiro Yoshimoto, Maiko Sezaki, Hitoshi Takizawa, Satoshi P. Tsunoda, Shin-ichiro Horigane, Shuhei Ueda, Sayaka Takemoto-Kimura, Hideki Kandori, Akihiro Yamanaka, Takayuki Yamashita
    Nature Communications, 12(4478) 4478-4478, Jul, 2021  Peer-reviewedLast authorCorresponding author
    <title>Abstract</title>Scintillators emit visible luminescence when irradiated with X-rays. Given the unlimited tissue penetration of X-rays, the employment of scintillators could enable remote optogenetic control of neural functions at any depth of the brain. Here we show that a yellow-emitting inorganic scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG), can effectively activate red-shifted excitatory and inhibitory opsins, ChRmine and GtACR1, respectively. Using injectable Ce:GAGG microparticles, we successfully activated and inhibited midbrain dopamine neurons in freely moving mice by X-ray irradiation, producing bidirectional modulation of place preference behavior. Ce:GAGG microparticles are non-cytotoxic and biocompatible, allowing for chronic implantation. Pulsed X-ray irradiation at a clinical dose level is sufficient to elicit behavioral changes without reducing the number of radiosensitive cells in the brain and bone marrow. Thus, scintillator-mediated optogenetics enables minimally invasive, wireless control of cellular functions at any tissue depth in living animals, expanding X-ray applications to functional studies of biology and medicine.
  • Han-Ying Wang, Kohgaku Eguchi, Takayuki Yamashita, Tomoyuki Takahashi
    The Journal of neuroscience, 40(21) 4103-4115, May 20, 2020  Peer-reviewed
    Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated excitatory post-synaptic currents by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca2+ currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca2+ currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca2+ influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending upon input frequencies. In simultaneous pre- and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic cortico-cortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses.Significance Statement:Synaptic mechanisms of general anesthesia remain unidentified. In rat brainstem slices, isoflurane inhibits excitatory transmitter release by blocking presynaptic Ca2+ channels and exocytic machinery, with the latter mechanism predominating in its inhibitory effect on high-frequency transmission. Both in slice and in vivo, isoflurane preferentially inhibits spike transmission induced by high-frequency presynaptic inputs. This low-pass filtering action of isoflurane likely plays a significant role in general anesthesia.
  • Takayuki Yamashita, Angeliki Vavladeli, Aurélie Pala, Katia Galan, Sylvain Crochet, Sara S. A. Petersen, Carl C. H. Petersen
    Frontiers in Neuroanatomy, 12 33, May 1, 2018  Peer-reviewedLead author
    Excitatory projection neurons of the neocortex are thought to play important roles in perceptual and cognitive functions of the brain by directly connecting diverse cortical and subcortical areas. However, many aspects of the anatomical organization of these inter-areal connections are unknown. Here, we studied long-range axonal projections of excitatory layer 2/3 neurons with cell bodies located in mouse primary somatosensory barrel cortex (wS1). As a population, these neurons densely projected to secondary whisker somatosensory cortex (wS2) and primary/secondary whisker motor cortex (wM1/2), with additional axon in the dysgranular zone surrounding the barrel field, perirhinal temporal association cortex and striatum. In three-dimensional reconstructions of 6 individual wS2-projecting neurons and 9 individual wM1/2-projecting neurons, we found that both classes of neurons had extensive local axon in layers 2/3 and 5 of wS1. Neurons projecting to wS2 did not send axon to wM1/2, whereas a small subset of wM1/2-projecting neurons had relatively weak projections to wS2. A small fraction of projection neurons solely targeted wS2 or wM1/2. However, axon collaterals from wS2-projecting and wM1/2-projecting neurons were typically also found in subsets of various additional areas, including the dysgranular zone, perirhinal temporal association cortex and striatum. Our data suggest extensive diversity in the axonal targets selected by individual nearby cortical long-range projection neurons with somata located in layer 2/3 of wS1.
  • Laura Busse, Jessica A. Cardin, M. Eugenia Chiappe, Michael M. Halassa, Matthew J. McGinley, Takayuki Yamashita, Aman B. Saleem
    JOURNAL OF NEUROSCIENCE, 37(45) 10826-10834, Nov, 2017  Peer-reviewed
    A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field.
  • Takayuki Yamashita, Akihiro Yamanaka
    CURRENT OPINION IN NEUROBIOLOGY, 44 94-100, Jun, 2017  Peer-reviewedInvitedLead author
    The lateral hypothalamic area (LHA) of the diencephalon is crucially involved in controlling instinctive behavior such as sleep -wake cycle and feeding behavior. LHA is a heterogeneous structure that contains spatially intermingled, genetically distinct cell populations. Among LHA neurons, orexin/hypocretin (OX) neuron is the key cell type that promotes waking, and specific loss of OX neurons results in narcolepsy. Melanin-concentrating hormone (MCH) containing neurons are known to be active during rapid eye movement (REM) sleep and stimulation of these neurons promotes REM sleep. Here we review the classical and more recent findings in this field and discuss the molecular and cellular network organization of LHA neurons that could ultimately regulate the switch between wakefulness and general states of sleep.
  • Takayuki Yamashita, Carl C. H. Petersen
    ELIFE, 5 e15798, Jun, 2016  Peer-reviewedLead authorCorresponding author
    Goal-directed behavior involves distributed neuronal circuits in the mammalian brain, including diverse regions of neocortex. However, the cellular basis of long-range cortico-cortical signaling during goal-directed behavior is poorly understood. Here, we recorded membrane potential of excitatory layer 2/3 pyramidal neurons in primary somatosensory barrel cortex (S1) projecting to either primary motor cortex (M1) or secondary somatosensory cortex (S2) during a whisker detection task, in which thirsty mice learn to lick for water reward in response to a whisker deflection. Whisker stimulation in 'Good performer' mice, but not 'Naive' mice, evoked long-lasting biphasic depolarization correlated with task performance in S2-projecting (S2-p) neurons, but not M1-projecting (M1-p) neurons. Furthermore, S2-p neurons, but not M1-p neurons, became excited during spontaneous unrewarded licking in 'Good performer' mice, but not in 'Naive' mice. Thus, a learning-induced, projection-specific signal from S1 to S2 may contribute to goal-directed sensorimotor transformation of whisker sensation into licking motor output.
  • Shoko Hososhima, Hideya Yuasa, Toru Ishizuka, Mohammad Razuanul Hoque, Takayuki Yamashita, Akihiro Yamanaka, Eriko Sugano, Hiroshi Tomita, Hiromu Yawo
    SCIENTIFIC REPORTS, 5 16533, Nov, 2015  Peer-reviewed
    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called 'imaging window'. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.
  • Takayuki Yamashita, Aurelie Pala, Leticia Pedrido, Yves Kremer, Egbert Welker, Carl C. H. Petersen
    NEURON, 80(6) 1477-1490, Dec, 2013  Peer-reviewedLead authorCorresponding author
    Primary sensory cortex discriminates incoming sensory information and generates multiple processing streams toward other cortical areas. However, the underlying cellular mechanisms remain unknown. Here, by making whole-cell recordings in primary somatosensory barrel cortex (Si) of behaving mice, we show that S1 neurons projecting to primary motor cortex (M1) and those projecting to secondary somatosensory cortex (S2) have distinct intrinsic membrane properties and exhibit markedly different membrane potential dynamics during behavior. Passive tactile stimulation evoked faster and larger postsynaptic potentials (PSPs) in M1-projecting neurons, rapidly driving phasic action potential firing, well-suited for stimulus detection. Repetitive active touch evoked strongly depressing PSPs and only transient firing in M1-projecting neurons. In contrast, PSP summation allowed S2-projecting neurons to robustly signal sensory information accumulated during repetitive touch, useful for encoding object features. Thus, target-specific transformation of sensory-evoked synaptic potentials by Si projection neurons generates functionally distinct output signals for sensorimotor coordination and sensory perception.
  • Takayuki Yamashita
    NEUROSCIENCE RESEARCH, 73(1) 1-7, May, 2012  Peer-reviewedInvitedLead authorLast authorCorresponding author
    Action potentials, when arriving at presynaptic terminals, elicit Ca2+ influx through voltage-gated Ca2+ channels. Intracellular [Ca2+] elevation around the channels subsequently triggers synaptic vesicle exocytosis and also induces various protein reactions that regulate vesicle endocytosis and recycling to provide for long-term sustainability of synaptic transmission. Recent studies using membrane capacitance measurements, as well as high-resolution optical imaging, have revealed that the dominant type of synaptic vesicle endocytosis at central nervous system synapses is mediated by clathrin and dynamin. Furthermore. Ca2+-dependent mechanisms regulating endocytosis may operate in different ways depending on the distance from Ca2+ channels: (1) intracellular Ca2+ in the immediate vicinity of a Ca2+ channel plays an essential role in triggering endocytosis, and (2) intracellular Ca2+ traveling far from the channels has a modulatory effect on endocytosis at the periactive zone. Here. I integrate the latest progress in this field to propose a compartmental model for regulation of vesicle endocytosis at synapses and discuss the possible roles of presynaptic Ca2+-binding proteins including calmodulin, calcineurin and synaptotagmin. (c) 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
  • Takayuki Yamashita, Kohgaku Eguchi, Naoto Saitoh, Henrique von Gersdorff, Tomoyuki Takahashi
    NATURE NEUROSCIENCE, 13(7) 838-U76, Jul, 2010  Peer-reviewedLead authorCorresponding author
    Ca2+ is thought to be essential for the exocytosis and endocytosis of synaptic vesicles. However, the manner in which Ca2+ coordinates these processes remains unclear, particularly at mature synapses. Using membrane capacitance measurements from calyx of Held nerve terminals in rats, we found that vesicle endocytosis is initiated primarily in Ca2+ nanodomains around Ca2+ channels, where exocytosis is triggered. Bulk Ca2+ outside of the domain could also be involved in endocytosis at immature synapses, although only after extensive exocytosis at more mature synapses. This bulk Ca2+-dependent endocytosis required calmodulin and calcineurin activation at immature synapses, but not at more mature synapses. Similarly, GTP-independent endocytosis, which occurred after extensive exocytosis at immature synapses, became negligible after maturation. We propose that nanodomain Ca2+ simultaneously triggers exocytosis and endocytosis of synaptic vesicles and that the molecular mechanisms underlying Ca2+-dependent endocytosis undergo major developmental changes at this fast central synapse.
  • Hiroyasu Watanabe, Takayuki Yamashita, Naoto Saitoh, Shigeki Kiyonaka, Akihiro Iwamatsu, Kevin P. Campbell, Yasuo Mori, Tomoyuki Takahashi
    JOURNAL OF NEUROSCIENCE, 30(2) 655-660, Jan, 2010  Peer-reviewed
    The synaptic protein interaction (synprint) site of the voltage-gated Ca2+ channel (VGCC)alpha 1 subunit can interact with proteins involved in exocytosis, and it is therefore thought to be essential for exocytosis of synaptic vesicles. Here we report that the synprint site can also directly bind the mu subunit of AP-2, an adaptor protein for clathrin-mediated endocytosis, in competition with the synaptotagmin 1 (Syt 1) C2B domain. In brain lysates, the AP-2-synprint interaction occurred over a wide range of Ca2+ concentrations but was inhibited at high Ca2+ concentrations, in which Syt 1 interacted with synprint site. At the calyx of Held synapse in rat brainstem slices, direct presynaptic loading of the synprint fragment peptide blocked endocytic, but not exocytic, membrane capacitance changes. We propose that the VGCC synprint site is involved in synaptic vesicle endocytosis, rather than exocytosis, in the nerve terminal, via Ca2+-dependent interactions with AP-2 and Syt.
  • Takayuki Yamashita, Takeshi Kanda, Kohgaku Eguchi, Tomoyuki Takahashi
    JOURNAL OF PHYSIOLOGY-LONDON, 587(10) 2327-2339, May, 2009  Peer-reviewedLead author
    At central glutamatergic synapses, neurotransmitter often saturates postsynaptic AMPA receptors (AMPARs), thereby restricting the dynamic range of synaptic efficacy. Here, using simultaneous pre- and postsynaptic whole-cell recordings, at the calyx of Held synapse of immature rats, we have investigated the mechanism by which transmitter glutamate saturates postsynaptic AMPARs. When we loaded l-glutamate (1-100 mm) into presynaptic terminals, the quantal EPSC (qEPSC) amplitude changed in a concentration-dependent manner. At physiological temperature (36-37 degrees C), the qEPSC amplitude increased when intraterminal l-glutamate concentration was elevated from 1 mm to 10 mm, but it reached a plateau at 10 mm. This plateau persisted after bath-application of the low affinity AMPAR antagonist kynurenate, suggesting that it was caused by saturation of vesicular filling with glutamate rather than by saturation of postsynaptic AMPARs. In contrast to qEPSCs, action potential-evoked EPSCs remained unchanged by increasing intraterminal l-glutamate from 1 mm to 100 mm, even at room temperature, indicating that multi-quantal glutamate saturated postsynaptic AMPARs. This saturation could be relieved by blocking AMPAR desensitization using cyclothiazide (100 mu m). The concentration of ambient glutamate in the slice, estimated from NMDA receptor current fluctuations, was 55 nm; this was far below the concentration required for AMPAR desensitization. We conclude that rapid AMPAR desensitization, caused by glutamate released from multiple vesicles during synaptic transmission, underlies postsynaptic AMPAR saturation at this immature calyceal synapse before the onset of hearing.
  • Takeshi Nakamura, Takayuki Yamashita, Naoto Saitoh, Tomoyuki Takahashi
    JOURNAL OF PHYSIOLOGY-LONDON, 586(9) 2253-2261, May, 2008  Peer-reviewedLead author
    Ca2+-binding to calmodulin (CaM) causes facilitation and/or inactivation of recombinant Ca2+ channels. At the rat calyx of Held, before hearing onset, presynaptic Ca2+ currents (I-pCa) undergo Ca2+/CaM-dependent inactivation during repetitive activation at around 1 Hz, implying that this may be a major cause of short-term synaptic depression. However, it remains open whether the Ca2+/CaM-dependent inactivation of I-pCa persists in more mature animals. To address this question, we tested the effect of CaM inhibitors on the activity-dependent modulation of I-pCa in calyces, before (postnatal day (P) 7-9) and after (P13-15) hearing onset. Our results indicate that the CaM-dependent I-pCa inactivation during low-frequency stimulation, and the ensuing synaptic depression, occur only at calyces in the prehearing period. However, CaM immunoreactivity in P8 and P14 calyces was equally strong. Even at P13-15, high frequency stimulation (200-500 Hz) could induce I-pCa inactivation, which was attenuated by EGTA (10 mM) or a CaM inhibitor peptide loaded into the terminal. Furthermore, the CaM inhibitor peptide attenuated a transient facilitation of I-pCa preceding inactivation observed at 500 Hz stimulation, whereas it had no effect on sustained I-pCa facilitations during trains of 50-200 Hz stimulation. These results suggest that the Ca2+/CaM-dependent I-pCa modulation requires a high intraterminal Ca2+ concentration, which can be attained at immature calyces during low frequency stimulation, but only during unusually high frequency stimulation at calyceal terminals in the posthearing period.
  • Maki Koike-Tani, Takeshi Kanda, Naoto Saitoh, Takayuki Yamashita, Tomoyuki Takahashi
    JOURNAL OF PHYSIOLOGY-LONDON, 586(9) 2263-2275, May, 2008  Peer-reviewed
    Paired-pulse facilitation (PPF) and depression (PPD) are forms of short-term plasticity that are generally thought to reflect changes in transmitter release probability. However, desensitization of postsynaptic AMPA receptors (AMPARs) significantly contributes to PPD at many glutamatergic synapses. To clarify the involvement of AMPAR desensitization in synaptic PPD, we compared PPD with AMPAR desensitization, induced by paired-pulse glutamate application in patches excised from postsynaptic cells at the calyx of Held synapse of developing rats. We found that AMPAR desensitization contributed significantly to PPD before the onset of hearing (P10-12), but that its contribution became negligible after hearing onset. During postnatal development (P7-21) the recovery of AMPARs from desensitization became faster. Concomitantly, glutamate sensitivity of AMPAR desensitization declined. Single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated a developmental decline of GluR1 expression that correlated with speeding of the recovery of AMPARs from desensitization. Transmitter release probability declined during the second postnatal week (P7-14). Manipulation of the extracellular Ca(2+)/Mg(2+) ratio, to match release probability at P7-8 and P13-15 synapses, revealed that the release probability is also an important factor determining the involvement of AMPAR desensitization in PPD. We conclude that the extent of involvement of AMPAR desensitization in short-term synaptic depression is determined by both pre- and postsynaptic mechanisms.
  • T Yamashita, T Hige, T Takahashi
    SCIENCE, 307(5706) 124-127, Jan, 2005  Peer-reviewedLead author
    Molecular dependence of vesicular endocytosis was investigated with capacitance measurements at the calyx of Held terminal in brainstem slices. Intraterminal loading of botulinum toxin E revealed that the rapid capacitance transient implicated as "kiss-and-run" was unrelated to transmitter release. The release-related capacitance. change decayed with an endocytotic time constant of 10 to 25 seconds, depending on the magnitude of exocytosis. Presynaptic loading of the nonhydrolyzable guanosine, 5'-triphosphate (GTP) analog GTPgammaS or dynamin-1 proline-rich domain peptide abolished endocytosis. These compounds had no immediate effect on exocytosis, but caused a use-dependent rundown of exocytosis. Thus, the guanosine triphosphatase dynamin-1 is indispensable for vesicle endocytosis at this fast central nervous system (CNS) synapse.
  • T Yamashita, T Ishikawa, T Takahashi
    JOURNAL OF NEUROSCIENCE, 23(9) 3633-3638, May, 2003  Peer-reviewedLead author
    Whether a quantal packet of transmitter saturates postsynaptic receptors is a fundamental question in central synaptic transmission. However, this question remains open with regard to saturation at mature synapses. The calyx of Held, a giant glutamatergic synapse in the auditory brainstem, becomes functionally mature during the fourth postnatal week in rats. During postnatal development, the mean amplitude of miniature (i.e., quantal) EPSCs (mEPSCs) becomes significantly larger. Experiments using the rapidly dissociating glutamate receptor antagonist kynurenate suggested that vesicular glutamate content increases with development. To test whether AMPA receptors are saturated by a packet of transmitter, we infused a high concentration of L-glutamate into mature calyceal terminals. This caused a marked increase in the mean amplitude of mEPSCs. We conclude that a single packet of transmitter glutamate does not saturate postsynaptic AMPA receptors even at the mature calyx of Held synapse with increased vesicular transmitter content.
  • N Miyakawa, S Uchino, T Yamashita, H Okada, T Nakamura, S Kaminogawa, Y Miyamoto, T Hisatsune
    NEUROREPORT, 13(13) 1667-1673, Sep, 2002  Peer-reviewed
    The NMDA receptor (NMDAR) is a Ca2+-permeable cation channel that plays a critical role in neural network formation during brain development. Since it is blocked in a voltage-dependent manner by extracellular Mg2+, in order for the NMDA to be activated, the membrane must be strongly depolarized. Immature neurons in the developing neocortex can be depolarized by ligand-gated Cl- channels, such as the glycine receptor (GlyR) or GABA(A) receptor (GABA(A)R). We here assess the contribution of GlyRs to Ca2+ influx via NMDARs in neonatal mouse cortical neurons. The GlyR antagonist, strychnine, was more effective in suppressing postsynaptic Ca2+ influx than the GABA(A)R antagonist, picrotoxin, suggesting greater potentiation of NMDARs by GlyRs than by GABA(A)Rs. The GlyR, known to be endogenously activated at this stage, may play a critical role in neocortical development.

Misc.

 8
  • 松原 崇紀, 山下 貴之
    生物工学会誌, 100(8) 437-440, 2022  InvitedLast authorCorresponding author
  • 山下 貴之
    細胞, 52(2) 63-66, Feb, 2020  Invited
    光遺伝学は脳内の特定の細胞機能を光で操作する手法である。この革命的な手法が登場して以来、神経科学は様変わりした。今や誰もが光を使い、好きな神経細胞の活動を好きなタイミングで自在に操る時代になりつつある。しかしながら、光遺伝学に使われる光は可視光であり、哺乳類の脳深部を操作するには体外から光を照射しても効果がなく、何らかのガイドが必要である。最も一般的に使われる手法は、光学ファイバーを脳組織に刺し込む方法であるが、組織侵襲が大きく、動物の運動を制限してしまうなどの種々の不都合が問題となる。最近、この問題を解決するために、無線で駆動する超小型LEDデバイスを用いた手法や、組織透過性の高い近赤外光を可視光へと変換するナノ粒子を用いた手法が開発されてきた。このような遠隔的な脳神経操作法は低侵襲性と実験対象への負担の軽減を長所とするが、それぞれに特徴的な短所もあり、目下さらなる技術開発が進んでいる。(著者抄録)
  • 山下 貴之
    ブレインサイエンス・レビュー, 2018 383-403, Mar, 2018  
  • 山下 貴之
    Clinical Neuroscience, 35(2) 166-168, Feb, 2017  
  • 山下 貴之, 山中 章弘
    Clinical Neuroscience, 34(6) 612-613, Jun, 2016  

Books and Other Publications

 1
  • Takahashi T, Hori T, Nakamura Y, Yamashita T (Role: Joint author, pp.137-145)
    Springer, 2012

Teaching Experience

 4

Research Projects

 32

Industrial Property Rights

 1

Other

 1
  • X線を用いた細胞機能操作法 (実験動物体外からX線を照射し、体内に埋め込んだCe:GAGGなどのシンチレータを発光させ、周囲に発現させた光感受性タンパク質を活性化する方法) 日本特許出願済み ( 「オプシンの活性を調節する方法」産業財産権の項を参照。) *本研究シーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進セン ター(fuji-san@fujita-hu.ac.jp)まで