PhysiologyⅡ

山下 貴之

ヤマシタ タカユキ  (Takayuki Yamashita)

基本情報

所属
藤田医科大学 医学部 医学科 生理学II講座 教授
(兼任)大学院医学研究科 神経生理学講座 教授
(兼任)精神・神経病態解明センター 神経生理学部門 教授
学位
博士(医学)(2007年3月 東京大学)

J-GLOBAL ID
200901070286622131
researchmap会員ID
6000003393

外部リンク

 東大医・神経生理(高橋智幸研究室)出身。 OIST、EPFL、名大を経て、現在 藤田医科大 医学部 生理学II講座 教授。同大 大学院医学研究科 神経生理学分野 教授、同大 精神・神経病態解明センター 神経生理学部門 教授も兼任しております。
 研究室の基本技術はマウスを使った電気生理学で、基本的な興味は大脳皮質による感覚・運動制御機構と嗜好性行動・社会性行動の神経基盤です。異なる概念や異分野技術を組み合わせて新しいフィールドを開拓していこうというのがモットーです。詳しくは独自ホームページ(http://www.yamashitalab.org)をご覧ください。


受賞

 4

主要な論文

 24
  • Wan-Ru Li, Takashi Nakano, Kohta Mizutani, Takanori Matsubara, Masahiro Kawatani, Yasutaka Mukai, Teruko Danjo, Hikaru Ito, Hidenori Aizawa, Akihiro Yamanaka, Carl C.H. Petersen, Junichiro Yoshimoto, Takayuki Yamashita
    Current Biology 2023年8月  査読有り最終著者責任著者
  • Takanori Matsubara, Takayuki Yanagida, Noriaki Kawaguchi, Takashi Nakano, Junichiro Yoshimoto, Maiko Sezaki, Hitoshi Takizawa, Satoshi P. Tsunoda, Shin-ichiro Horigane, Shuhei Ueda, Sayaka Takemoto-Kimura, Hideki Kandori, Akihiro Yamanaka, Takayuki Yamashita
    Nature Communications 12(4478) 4478-4478 2021年7月  査読有り最終著者責任著者
    <title>Abstract</title>Scintillators emit visible luminescence when irradiated with X-rays. Given the unlimited tissue penetration of X-rays, the employment of scintillators could enable remote optogenetic control of neural functions at any depth of the brain. Here we show that a yellow-emitting inorganic scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG), can effectively activate red-shifted excitatory and inhibitory opsins, ChRmine and GtACR1, respectively. Using injectable Ce:GAGG microparticles, we successfully activated and inhibited midbrain dopamine neurons in freely moving mice by X-ray irradiation, producing bidirectional modulation of place preference behavior. Ce:GAGG microparticles are non-cytotoxic and biocompatible, allowing for chronic implantation. Pulsed X-ray irradiation at a clinical dose level is sufficient to elicit behavioral changes without reducing the number of radiosensitive cells in the brain and bone marrow. Thus, scintillator-mediated optogenetics enables minimally invasive, wireless control of cellular functions at any tissue depth in living animals, expanding X-ray applications to functional studies of biology and medicine.
  • Takayuki Yamashita, Carl C. H. Petersen
    ELIFE 5 e15798 2016年6月  査読有り筆頭著者責任著者
    Goal-directed behavior involves distributed neuronal circuits in the mammalian brain, including diverse regions of neocortex. However, the cellular basis of long-range cortico-cortical signaling during goal-directed behavior is poorly understood. Here, we recorded membrane potential of excitatory layer 2/3 pyramidal neurons in primary somatosensory barrel cortex (S1) projecting to either primary motor cortex (M1) or secondary somatosensory cortex (S2) during a whisker detection task, in which thirsty mice learn to lick for water reward in response to a whisker deflection. Whisker stimulation in 'Good performer' mice, but not 'Naive' mice, evoked long-lasting biphasic depolarization correlated with task performance in S2-projecting (S2-p) neurons, but not M1-projecting (M1-p) neurons. Furthermore, S2-p neurons, but not M1-p neurons, became excited during spontaneous unrewarded licking in 'Good performer' mice, but not in 'Naive' mice. Thus, a learning-induced, projection-specific signal from S1 to S2 may contribute to goal-directed sensorimotor transformation of whisker sensation into licking motor output.
  • Takayuki Yamashita, Aurelie Pala, Leticia Pedrido, Yves Kremer, Egbert Welker, Carl C. H. Petersen
    NEURON 80(6) 1477-1490 2013年12月  査読有り筆頭著者責任著者
    Primary sensory cortex discriminates incoming sensory information and generates multiple processing streams toward other cortical areas. However, the underlying cellular mechanisms remain unknown. Here, by making whole-cell recordings in primary somatosensory barrel cortex (Si) of behaving mice, we show that S1 neurons projecting to primary motor cortex (M1) and those projecting to secondary somatosensory cortex (S2) have distinct intrinsic membrane properties and exhibit markedly different membrane potential dynamics during behavior. Passive tactile stimulation evoked faster and larger postsynaptic potentials (PSPs) in M1-projecting neurons, rapidly driving phasic action potential firing, well-suited for stimulus detection. Repetitive active touch evoked strongly depressing PSPs and only transient firing in M1-projecting neurons. In contrast, PSP summation allowed S2-projecting neurons to robustly signal sensory information accumulated during repetitive touch, useful for encoding object features. Thus, target-specific transformation of sensory-evoked synaptic potentials by Si projection neurons generates functionally distinct output signals for sensorimotor coordination and sensory perception.
  • Takayuki Yamashita, Kohgaku Eguchi, Naoto Saitoh, Henrique von Gersdorff, Tomoyuki Takahashi
    NATURE NEUROSCIENCE 13(7) 838-U76 2010年7月  査読有り筆頭著者責任著者
    Ca2+ is thought to be essential for the exocytosis and endocytosis of synaptic vesicles. However, the manner in which Ca2+ coordinates these processes remains unclear, particularly at mature synapses. Using membrane capacitance measurements from calyx of Held nerve terminals in rats, we found that vesicle endocytosis is initiated primarily in Ca2+ nanodomains around Ca2+ channels, where exocytosis is triggered. Bulk Ca2+ outside of the domain could also be involved in endocytosis at immature synapses, although only after extensive exocytosis at more mature synapses. This bulk Ca2+-dependent endocytosis required calmodulin and calcineurin activation at immature synapses, but not at more mature synapses. Similarly, GTP-independent endocytosis, which occurred after extensive exocytosis at immature synapses, became negligible after maturation. We propose that nanodomain Ca2+ simultaneously triggers exocytosis and endocytosis of synaptic vesicles and that the molecular mechanisms underlying Ca2+-dependent endocytosis undergo major developmental changes at this fast central synapse.
  • T Yamashita, T Hige, T Takahashi
    SCIENCE 307(5706) 124-127 2005年1月  査読有り筆頭著者
    Molecular dependence of vesicular endocytosis was investigated with capacitance measurements at the calyx of Held terminal in brainstem slices. Intraterminal loading of botulinum toxin E revealed that the rapid capacitance transient implicated as "kiss-and-run" was unrelated to transmitter release. The release-related capacitance. change decayed with an endocytotic time constant of 10 to 25 seconds, depending on the magnitude of exocytosis. Presynaptic loading of the nonhydrolyzable guanosine, 5'-triphosphate (GTP) analog GTPgammaS or dynamin-1 proline-rich domain peptide abolished endocytosis. These compounds had no immediate effect on exocytosis, but caused a use-dependent rundown of exocytosis. Thus, the guanosine triphosphatase dynamin-1 is indispensable for vesicle endocytosis at this fast central nervous system (CNS) synapse.

MISC

 8
  • 松原 崇紀, 山下 貴之
    生物工学会誌 100(8) 437-440 2022年  招待有り最終著者責任著者
  • 山下 貴之
    細胞 52(2) 63-66 2020年2月  招待有り
    光遺伝学は脳内の特定の細胞機能を光で操作する手法である。この革命的な手法が登場して以来、神経科学は様変わりした。今や誰もが光を使い、好きな神経細胞の活動を好きなタイミングで自在に操る時代になりつつある。しかしながら、光遺伝学に使われる光は可視光であり、哺乳類の脳深部を操作するには体外から光を照射しても効果がなく、何らかのガイドが必要である。最も一般的に使われる手法は、光学ファイバーを脳組織に刺し込む方法であるが、組織侵襲が大きく、動物の運動を制限してしまうなどの種々の不都合が問題となる。最近、この問題を解決するために、無線で駆動する超小型LEDデバイスを用いた手法や、組織透過性の高い近赤外光を可視光へと変換するナノ粒子を用いた手法が開発されてきた。このような遠隔的な脳神経操作法は低侵襲性と実験対象への負担の軽減を長所とするが、それぞれに特徴的な短所もあり、目下さらなる技術開発が進んでいる。(著者抄録)
  • 山下 貴之
    ブレインサイエンス・レビュー 2018 383-403 2018年3月  
  • 山下 貴之
    Clinical Neuroscience 35(2) 166-168 2017年2月  
  • 山下 貴之, 山中 章弘
    Clinical Neuroscience 34(6) 612-613 2016年6月  

書籍等出版物

 1
  • Takahashi T, Hori T, Nakamura Y, Yamashita T (担当:共著, 範囲:pp.137-145)
    Springer 2012年

担当経験のある科目(授業)

 4

共同研究・競争的資金等の研究課題

 33

産業財産権

 1

その他

 1
  • X線を用いた細胞機能操作法 (実験動物体外からX線を照射し、体内に埋め込んだCe:GAGGなどのシンチレータを発光させ、周囲に発現させた光感受性タンパク質を活性化する方法) 日本特許出願済み ( 「オプシンの活性を調節する方法」産業財産権の項を参照。) *本研究シーズに関する産学共同研究の問い合わせは藤田医科大学産学連携推進セン ター(fuji-san@fujita-hu.ac.jp)まで