医学部
基本情報
- 所属
- 藤田医科大学 医学部リハビリテーション医学講座 講師
- 学位
- 博士(医学)(2021年3月 昭和大学)
- J-GLOBAL ID
- 201901010299429742
- researchmap会員ID
- B000362589
大学病院の急性期リハビリテーション・回復期リハビリテーションの診療に従事、昭和大学大学院で博士(医学)を取得した。主な研究分野は科学的根拠に基づくリハビリテーションの構造化である。さらに、他領域にも関連するシステマティックレビューやメタアナリシスにも取り組んでいる。
経歴
4-
2025年4月 - 現在
-
2024年4月 - 2025年3月
-
2023年8月 - 2024年3月
-
2021年4月 - 2023年7月
学歴
3-
2023年4月 - 2025年3月
-
2017年4月 - 2021年3月
-
2008年4月 - 2014年3月
委員歴
1-
2020年4月 - 2021年3月
論文
22-
Journal of NeuroEngineering and Rehabilitation 22(42) 2025年3月 査読有り
-
Frontiers in Bioengineering and Biotechnology 11 2024年1月3日 査読有りBackground: The importance of being physically active and avoiding staying in bed has been recognized in stroke rehabilitation. However, studies have pointed out that stroke patients admitted to rehabilitation units often spend most of their day immobile and inactive, with limited opportunities for activity outside their bedrooms. To address this issue, it is necessary to record the duration of stroke patients staying in their bedrooms, but it is impractical for medical providers to do this manually during their daily work of providing care. Although an automated approach using wearable devices and access points is more practical, implementing these access points into medical facilities is costly. However, when combined with machine learning, predicting the duration of stroke patients staying in their bedrooms is possible with reduced cost. We assessed using machine learning to estimate bedroom-stay duration using activity data recorded with wearable devices. Method: We recruited 99 stroke hemiparesis inpatients and conducted 343 measurements. Data on electrocardiograms and chest acceleration were measured using a wearable device, and the location name of the access point that detected the signal of the device was recorded. We first investigated the correlation between bedroom-stay duration measured from the access point as the objective variable and activity data measured with a wearable device and demographic information as explanatory variables. To evaluate the duration predictability, we then compared machine-learning models commonly used in medical studies. Results: We conducted 228 measurements that surpassed a 90% data-acquisition rate using Bluetooth Low Energy. Among the explanatory variables, the period spent reclining and sitting/standing were correlated with bedroom-stay duration (Spearman’s rank correlation coefficient (R) of 0.56 and −0.52, p < 0.001). Interestingly, the sum of the motor and cognitive categories of the functional independence measure, clinical indicators of the abilities of stroke patients, lacked correlation. The correlation between the actual bedroom-stay duration and predicted one using machine-learning models resulted in an R of 0.72 and p < 0.001, suggesting the possibility of predicting bedroom-stay duration from activity data and demographics. Conclusion: Wearable devices, coupled with machine learning, can predict the duration of patients staying in their bedrooms. Once trained, the machine-learning model can predict without continuously tracking the actual location, enabling more cost-effective and privacy-centric future measurements.
-
Archives of Rehabilitation Research and Clinical Translation 5(4) 100287-100287 2023年12月 査読有り筆頭著者
-
Fujita Medical Journal 2023年11月 査読有り筆頭著者
MISC
10書籍等出版物
5講演・口頭発表等
25担当経験のある科目(授業)
4-
2023年4月 - 現在リハビリテーション医学 (藤田医科大学大学院保健学研究科)
-
2021年4月 - 現在運動学 (藤田医科大学保健衛生学部リハ学科)
-
2021年4月 - 現在リハビリ評価概論 (藤田医科大学保健衛生学部リハ学科)
-
2016年4月 - 2018年3月医学英語 (昭和大学)