基本情報
論文
200-
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 9-9 2024年8月23日
-
Modeling, Systems Engineering, and Project Management for Astronomy XI 93-93 2024年8月23日
-
Proceedings of SPIE - The International Society for Optical Engineering 13092 2024年Structural, Thermal and Optical Performance (STOP) analysis is performed to investigate the stability of the telescope to be onboard the Japan Astrometry Satellite Mission for INfrared Exploration (JASMINE). In order to perform one of the prime science objectives, high-precision astrometric observations in the wavelength range of 1.0–1.6 µm toward the Galactic center to reveal its central core structure and formation history, the JASMINE telescope is requested to be highly stable with an orbital change in the image distortion pattern being less than a few 10 µas after low-order correction. The JASMINE telescope tried to satisfy this requirement by adopting two design concepts. Firstly, the mirror and their support structures are made of extremely low coefficient-of-thermal-expansion materials. Secondly, their temperatures are highly stabilized with an orbital variation of less the 0.1 ◦C by the unique thermal control idea. Through the preliminary STOP analysis, the structural and thermal structural feasibility of the JASMINE telescope is considered. By combining the results of the structural and thermal design, its thermal deformation is estimated. The optical performance of the JASMINE telescope after the thermal deformation is numerically evaluated. It is found that the thermal displacement of the mirrors in the current structural thermal design produces a slightly large focus-length change. As far as the focus adjustment is adequately applied, the orbital variation of the image distortion pattern is suggested to become acceptable after the low-order correction.
-
Proceedings of SPIE, Ground-based and Airborne Instrumentation for Astronomy IX 12184 2022年8月29日MIMIZUKU is the first-generation mid-infrared instrument for the TAO 6.5-m telescope. It has three internal optical channels to cover a wide wavelength range from 2 to 38 mu m. Of the three channels, the NIR channel is responsible for observations in the shortest wavelength range, shorter than 5.3 mu m. The performance of the NIR channel is evaluated in the laboratory. Through the tests, we confirm the followings: 1) the detector (HAWAII-1RG with 5.3-mu m cutoff) likely achieves similar to 80% quantum efficiency; 2) imaging performance is sufficient to achieve seeing-limit spatial resolution; 3) system efficiencies in imaging modes are 2.4-31%; and 4) the system efficiencies in spectroscopic modes is 5-18%. These results suggest that the optical performance of the NIR channel is achieved as expected from characteristics of the optical components. However, calculations of the background levels and on-sky sensitivity based on these results suggest that neutral density (ND) filters are needed to avoid saturation in L'- and M'-band observations and that the ND filters and the entrance window, made of chemical-vapor-deposition (CVD) diamond, significantly degrade the sensitivity in these bands. This means that the use of different window materials and improvements of the detector readout speed are required to achieve both near-infrared and long-wavelength mid-infrared (>30 mu m) observations.
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X 11453 2020年12月18日We have developed a prototype half-wave plate (HWP) based polarization modulator (PMU) for Cosmic Microwave Background polarization measurement experiments. We built a 1/10 scaled PMU that consists of a 50 mm diameter five-layer achromatic HWP with a moth-eye broadband anti-reflection sub-wavelength structure mounted on a superconducting magnetic bearing. The entire system has cooled below 20 K in a cryostat chamber that has two millimeter-wave transparent windows. A coherent source and the diode detector are placed outside of the cryostat and the millimeter-wave goes through the PMU in the cryostat. We have measured the modulated signal by the PMU, analyzed the spectral signatures, and extracted the modulation efficiency over the frequency coverage of 34-161 GHz. We identified the peaks in the optical data, which are synchronous to the rotational frequency. We also identified the peaks that are originated from the resonance frequency of the levitating system. We also recovered the modulation efficiency as a function of the incident electromagnetic frequency and the data agrees to the predicted curves within uncertainties of the input parameters, i.e.The indices of refraction, thickness, and angle alignment. Finally, we discuss the implication of the results when this is applied to the LiteBIRD low-frequency telescope.
MISC
155共同研究・競争的資金等の研究課題
25-
日本学術振興会 科学研究費助成事業 2014年4月 - 2018年3月
-
日本学術振興会 科学研究費助成事業 2011年4月 - 2016年3月
-
日本学術振興会 科学研究費助成事業 2007年 - 2010年
-
日本学術振興会 科学研究費助成事業 2007年 - 2008年
-
日本学術振興会 科学研究費助成事業 2004年 - 2008年