研究者業績

吉川 真

ヨシカワ マコト  (Makoto YOSHIKAWA)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙機応用工学研究系 はやぶさ2プロジェクト 准教授
学位
理学博士(1989年3月 東京大学)

連絡先
yoshikawa.makotojaxa.jp
J-GLOBAL ID
200901037361657011
researchmap会員ID
1000304540

学歴

 2

受賞

 2

論文

 278
  • Hiroshi Naraoka, Yoshinori Takano, Jason P. Dworkin, Yasuhiro Oba, Kenji Hamase, Aogu Furusho, Nanako O. Ogawa, Minako Hashiguchi, Kazuhiko Fukushima, Dan Aoki, Philippe Schmitt-Kopplin, José C. Aponte, Eric T. Parker, Daniel P. Glavin, Hannah L. McLain, Jamie E. Elsila, Heather V. Graham, John M. Eiler, Francois-Regis Orthous-Daunay, Cédric Wolters, Junko Isa, Véronique Vuitton, Roland Thissen, Saburo Sakai, Toshihiro Yoshimura, Toshiki Koga, Naohiko Ohkouchi, Yoshito Chikaraishi, Haruna Sugahara, Hajime Mita, Yoshihiro Furukawa, Norbert Hertkorn, Alexander Ruf, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Kanako Sakamoto, Shogo Tachibana, Harold C. Connolly, Dante S. Lauretta, Masanao Abe, Toru Yada, Masahiro Nishimura, Kasumi Yogata, Aiko Nakato, Miwa Yoshitake, Ayako Suzuki, Akiko Miyazaki, Shizuho Furuya, Kentaro Hatakeda, Hiromichi Soejima, Yuya Hitomi, Kazuya Kumagai, Tomohiro Usui, Tasuku Hayashi, Daiki Yamamoto, Ryota Fukai, Kohei Kitazato, Seiji Sugita, Noriyuki Namiki, Masahiko Arakawa, Hitoshi Ikeda, Masateru Ishiguro, Naru Hirata, Koji Wada, Yoshiaki Ishihara, Rina Noguchi, Tomokatsu Morota, Naoya Sakatani, Koji Matsumoto, Hiroki Senshu, Rie Honda, Eri Tatsumi, Yasuhiro Yokota, Chikatoshi Honda, Tatsuhiro Michikami, Moe Matsuoka, Akira Miura, Hirotomo Noda, Tetsuya Yamada, Keisuke Yoshihara, Kosuke Kawahara, Masanobu Ozaki, Yu-ichi Iijima, Hajime Yano, Masahiko Hayakawa, Takahiro Iwata, Ryudo Tsukizaki, Hirotaka Sawada, Satoshi Hosoda, Kazunori Ogawa, Chisato Okamoto, Naoyuki Hirata, Kei Shirai, Yuri Shimaki, Manabu Yamada, Tatsuaki Okada, Yukio Yamamoto, Hiroshi Takeuchi, Atsushi Fujii, Yuto Takei, Kento Yoshikawa, Yuya Mimasu, Go Ono, Naoko Ogawa, Shota Kikuchi, Satoru Nakazawa, Fuyuto Terui, Satoshi Tanaka, Takanao Saiki, Makoto Yoshikawa, Sei-ichiro Watanabe, Yuichi Tsuda
    Science 379(6634) 2023年2月24日  
    The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples. We identified a variety of molecules containing the atoms CHNOS, formed by methylation, hydration, hydroxylation, and sulfurization reactions. Amino acids, aliphatic amines, carboxylic acids, polycyclic aromatic hydrocarbons, and nitrogen-heterocyclic compounds were detected, which had properties consistent with an abiotic origin. These compounds likely arose from an aqueous reaction on Ryugu’s parent body and are similar to the organics in Ivuna-type meteorites. These molecules can survive on the surfaces of asteroids and be transported throughout the Solar System.
  • Daisuke Nakashima, Tomoki Nakamura, Mingming Zhang, Noriko T. Kita, Takashi Mikouchi, Hideto Yoshida, Yuma Enokido, Tomoyo Morita, Mizuha Kikuiri, Kana Amano, Eiichi Kagawa, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Satoru Nakazawa, Fuyuto Terui, Hisayoshi Yurimoto, Takaaki Noguchi, Hikaru Yabuta, Hiroshi Naraoka, Ryuji Okazaki, Kanako Sakamoto, Sei-ichiro Watanabe, Shogo Tachibana, Yuichi Tsuda
    Nature Communications 14(1) 532-532 2023年2月16日  
    Abstract Chondrule-like objects and Ca-Al-rich inclusions (CAIs) are discovered in the retuned samples from asteroid Ryugu. Here we report results of oxygen isotope, mineralogical, and compositional analysis of the chondrule-like objects and CAIs. Three chondrule-like objects dominated by Mg-rich olivine are 16O-rich and -poor with Δ17O (=δ17O – 0.52 × δ18O) values of ~ –23‰ and ~ –3‰, resembling what has been proposed as early generations of chondrules. The 16O-rich objects are likely to be melted amoeboid olivine aggregates that escaped from incorporation into 16O-poor chondrule precursor dust. Two CAIs composed of refractory minerals are 16O-rich with Δ17O of ~ –23‰ and possibly as old as the oldest CAIs. The discovered objects (<30 µm) are as small as those from comets, suggesting radial transport favoring smaller objects from the inner solar nebula to the formation location of the Ryugu original parent body, which is farther from the Sun and scarce in chondrules. The transported objects may have been mostly destroyed during aqueous alteration in the Ryugu parent body.
  • Sho SASAKI, Shiho KANDA, Hiroshi KIKUCHI, Tatsuhiro MICHIKAMI, Tomokatsu MOROTA, Chikatoshi HONDA, Hideaki MIYAMOTO, Ryodo HEMMI, Seiji SUGITA, Eri TATSUMI, Masanori KANAMARU, Sei-ichiro WATANABE, Noriyuki NAMIKI, Patrick MICHEL, Masatoshi HIRABAYASHI, Naru HIRATA, Tomoki NAKAMURA, Takaaki NOGUCHI, Takahiro HIROI, Naoya SAKATANI, Koji MATSUMOTO, Hirotomo NODA, Shingo KAMEDA, Tohru KOUYAMA, Hidehiko SUZUKI, Manabu YAMADA, Rie HONDA, Yuichiro CHO, Kazuo YOSHIOKA, Masahiko HAYAKAWA, Moe MATSUOKA, Rina NOGUCHI, Hirotaka SAWADA, Yasuhiro YOKOTA, Makoto YOSHIKAWA
    Journal of Evolving Space Activities 2023年  
  • Yuto Takei, Shintaro Nishihira, Atsushi Harayama, Yuya Mimasu, Takanao Saiki, Satoru Nakazawa, Makoto Yoshikawa, Yuichi Tsuda
    Proceedings of the International Astronautical Congress, IAC 2023-October 2023年  
    After experiencing a series of mission failures from the late 1990s to the early 2000s, the Japan Aerospace Exploration Agency (JAXA) implemented a reform focusing on strengthening and promoting systems engineering and project management (SE/PM) in 2005. Since then, the occurrence rate of mission failures has decreased significantly for a while. Following the in-orbit failure of a flagship X-ray observatory that occurred in 2016, a cross-organizational reform of project management was implemented in 2017 to ensure development and create value. However, five years after this reform, the current new issues are becoming apparent. In parallel, a Japanese asteroid sample return probe “Hayabusa2” was developed and launched in December 2014. Overcoming the unexpectedly rough terrain of its target asteroid 162173 Ryugu, the probe marked a great success including two touchdowns to collect the asteroid's surface/underground soil and safe return to Earth on December 5th, 2020. This paper first reviews the two reforms and then takes up Hayabusa2's good practices to extract clues for solving current issues.
  • Kaitlyn A. McCain, Nozomi Matsuda, Ming Chang Liu, Kevin D. McKeegan, Akira Yamaguchi, Makoto Kimura, Naotaka Tomioka, Motoo Ito, Naoya Imae, Masayuki Uesugi, Naoki Shirai, Takuji Ohigashi, Richard C. Greenwood, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Kaori Hirahara, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Satoru Nakazawa, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Akiko Miyazaki, Masahiro Nishimura, Toru Yada, Masanao Abe, Tomohiro Usui, Sei ichiro Watanabe, Yuichi Tsuda
    Nature Astronomy 2023年  
    Samples from asteroid Ryugu returned by the Hayabusa2 mission contain evidence of extensive alteration by aqueous fluids and appear related to the CI chondrites. To understand the sources of the fluid and the timing of chemical reactions occurring during the alteration processes, we investigated the oxygen, carbon and 53Mn–53Cr systematics of carbonate and magnetite in two Ryugu particles. We find that the fluid was initially between 0 and 20 °C and enriched in 13C, 17O and 18O, and subsequently evolved towards lighter carbon and oxygen isotopic compositions as alteration proceeded. Carbonate ages show that this fluid–rock interaction took place within approximately the first 1.8 million years of Solar System history, requiring early accretion either in a planetesimal less than ∼20 km in diameter or within a larger body that was disrupted and reassembled.
  • Marine Paquet, Frederic Moynier, Tetsuya Yokoyama, Wei Dai, Yan Hu, Yoshinari Abe, Jérôme Aléon, Conel M. Conel, Sachiko Amari, Yuri Amelin, Ken ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Motoo Ito, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming Chang Liu, Yuki Masuda, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Izumi Nakai, Kazuhide Nagashima, David Nesvorný, Ann N. Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing Zhu Yin, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Nature Astronomy 2023年  
    In the version of this article initially published, author Izumi Nakai, now affiliated with the Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan, was incorrectly affiliated with Thermal Analysis, Rigaku Corporation, Tokyo, Japan. The error has been corrected in the HTML and PDF versions of the article.
  • Richard C. Greenwood, Ian A. Franchi, Ross Findlay, James A. Malley, Motoo Ito, Akira Yamaguchi, Makoto Kimura, Naotaka Tomioka, Masayuki Uesugi, Naoya Imae, Naoki Shirai, Takuji Ohigashi, Ming Chang Liu, Kaitlyn A. McCain, Nozomi Matsuda, Kevin D. McKeegan, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Akira Tsuchiyama, Masahiro Yasutake, Kaori Hirahara, Akihisa Tekeuchi, Shun Sekimoto, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Satoru Nakazawa, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Akiko Miyazaki, Masahiro Nishimura, Toru Yada, Masanao Abe, Tomohiro Usui, Sei ichiro Watanabe, Yuichi Tsuda
    Nature Astronomy 7(1) 29-38 2023年1月  
    The delivery of water to the inner Solar System, including Earth, is still a debated topic. A preferential role for hydrated asteroids in this process is supported by isotopic measurements. Carbonaceous chondrite (CC) meteorites represent our main source of information about these volatile-rich asteroids. However, the destruction of weaker materials during atmospheric entry creates a bias in our CC data. The return of surface materials from the C-type asteroid 162173 Ryugu by the Hayabusa2 spacecraft provides a unique opportunity to study high-porosity, low-density, primitive materials, unrepresented in the meteorite record. We measured the bulk oxygen isotope composition from four Ryugu particles and show that they most closely resemble the rare CI (CC Ivuna-type) chondrites, but with some differences that we attribute to the terrestrial contamination of the CI meteorites. We suggest that CI-related material is widespread among carbonaceous asteroids and a more important source of Earth’s water and other volatiles than its limited presence in our meteoritic collection indicates.
  • Akira Yamaguchi, Naotaka Tomioka, Motoo Ito, Naoki Shirai, Makoto Kimura, Richard C. Greenwood, Ming Chang Liu, Kaitlyn A. McCain, Nozomi Matsuda, Masayuki Uesugi, Naoya Imae, Takuji Ohigashi, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Kaori Hirahara, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Satoru Nakazawa, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Akiko Miyazaki, Masahiro Nishimura, Toru Yada, Masanao Abe, Tomohiro Usui, Sei ichiro Watanabe, Yuichi Tsuda
    Nature Astronomy 2023年  
    C-type asteroids are the source of the carbonaceous chondrite meteorites and represent remnants of primitive planetesimals that formed at the outer margins of the early Solar System and may have delivered volatiles to the inner Solar System, in particular the early Earth. However, the nature of carbonaceous chondrites is not well understood owing to terrestrial alteration. Here, we present the petrology and mineral chemistry of surface materials collected by the Japan Aerospace Exploration Agency (JAXA) Hayabusa2 spacecraft from the C-type asteroid Ryugu. The Ryugu particles we studied are similar to CI (Ivuna-type) chondrites but with some important differences, such as the presence of Na–Mg phosphates and Na-rich phases and the lack of ferrihydrite and gypsum. Ryugu particles experienced several steps of aqueous alteration, metasomatism and brecciation under variable conditions. These materials represent mixed lithologies and formed at different locations within their parent asteroid. The evidence presented here demonstrates that the C-type asteroid Ryugu experienced a complex geologic evolution shortly after its formation.
  • Noriyuki Kawasaki, Kazuhide Nagashima, Naoya Sakamoto, Toru Matsumoto, Ken-ichi Bajo, Sohei Wada, Yohei Igami, Akira Miyake, Takaaki Noguchi, Daiki Yamamoto, Sara S. Russell, Yoshinari Abe, Jérôme Aléon, Conel M. O’D. Alexander, Sachiko Amari, Yuri Amelin, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Motoo Ito, Shoichi Itoh, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Frédéric Moynier, Izumi Nakai, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Tetsuya Yokoyama, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Science Advances 8(50) 2022年12月16日  
    The extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: 16 O-rich (associated with refractory inclusions) and 16 O-poor (associated with chondrules). Both the 16 O-rich and 16 O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward. The abundance ratios of the 16 O-rich to 16 O-poor minerals in Ryugu and CI chondrites are higher than in other carbonaceous chondrite groups but are similar to that of comet 81P/Wild2, suggesting that Ryugu and CI chondrites accreted in the outer Solar System closer to the accretion region of comets.
  • Marine Paquet, Frederic Moynier, Tetsuya Yokoyama, Wei Dai, Yan Hu, Yoshinari Abe, Jérôme Aléon, Conel M. O’D. Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Motoo Ito, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Izumi Nakai, Kazuhide Nagashima, David Nesvorný, Ann N. Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Nature Astronomy 7(2) 182-189 2022年12月12日  査読有り
    Initial analyses showed that asteroid Ryugu’s composition is close to CI (Ivuna-like) carbonaceous chondrites (CCs) – the chemically most primitive meteorites, characterized by near-solar abundances for most elements. However, some isotopic signatures (for example, Ti, Cr) overlap with other CC groups, so the details of the link between Ryugu and the CI chondrites are not yet fully clear. Here we show that Ryugu and CI chondrites have the same zinc and copper isotopic composition. As the various chondrite groups have very distinct Zn and Cu isotopic signatures, our results point at a common genetic heritage between Ryugu and CI chondrites, ruling out any affinity with other CC groups. Since Ryugu’s pristine samples match the solar elemental composition for many elements, their Zn and Cu isotopic compositions likely represent the best estimates of the solar composition. Earth’s mass-independent Zn isotopic composition is intermediate between Ryugu/CC and non-carbonaceous chondrites (NCs), suggesting a contribution of Ryugu-like material to Earth’s budgets of Zn and other moderately volatile elements.
  • Takaaki Noguchi, Toru Matsumoto, Akira Miyake, Yohei Igami, Mitsutaka Haruta, Hikaru Saito, Satoshi Hata, Yusuke Seto, Masaaki Miyahara, Naotaka Tomioka, Hope A. Ishii, John P. Bradley, Kenta K. Ohtaki, Elena Dobrica, Hugues Leroux, Corentin Le Guillou, Damien Jacob, Francisco de la Pena, Sylvain Laforet, Maya Marinova, Falko Langenhorst, Dennis Harries, Pierre Beck, Thi H. Phan, Rolando Rebois, Neyda M. Abreu, Jennifer Gray, Thomas Zega, Pierre-M Zanetta, Michelle S. Thompson, Rhonda Stroud, Kate Burgess, Brittany A. Cymes, John C. Bridges, Leon Hicks, Martin R. Lee, Luke Daly, Phil A. Bland, Michael E. Zolensky, David R. Frank, James Martinez, Akira Tsuchiyama, Masahiro Yasutake, Junya Matsuno, Shota Okumura, Itaru Mitsukawa, Kentaro Uesugi, Masayuki Uesugi, Akihisa Takeuchi, Mingqi Sun, Satomi Enju, Aki Takigawa, Tatsuhiro Michikami, Tomoki Nakamura, Megumi Matsumoto, Yusuke Nakauchi, Masanao Abe, Masahiko Arakawa, Atsushi Fujii, Masahiko Hayakawa, Naru Hirata, Naoyuki Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu-ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kousuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Ryudo Tsukizaki, Koji Wada, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Ryohta Fukai, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Hiromichi Soejima, Ayako Suzuki, Tomohiro Usui, Toru Yada, Daiki Yamamoto, Kasumi Yogata, Miwa Yoshitake, Harold C. Connolly, Dante S. Lauretta, Hisayoshi Yurimoto, Kazuhide Nagashima, Noriyuki Kawasaki, Naoya Sakamoto, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Sei-ichiro Watanabe, Yuichi Tsuda
    NATURE ASTRONOMY 2022年12月  
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 mu m hydroxyl (-OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 mu m band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss.
  • Benjamin Bazi, Pieter Tack, Miles Lindner, Bart Vekemans, Ella De Pauw, Beverley Tkalcec, Frank E. Brenker, Jan Garrevoet, Gerald Falkenberg, Hikaru Yabuta, Hisayoshi Yurimoto, Tomoki Nakamura, Kana Amano, Megumi Matsumoto, Yuri Fujioka, Yuma Enokido, Daisuke Nakashima, Masayuki Uesugi, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Shogo Tachibana, Sei ichiro Watanabe, Yuichi Tsuda, Laszlo Vincze
    Earth, Planets and Space 74(1) 2022年12月  
    A fundamental parameter-based quantification scheme for confocal XRF was applied to sub-micron synchrotron radiation X-ray fluorescence (SR-XRF) data obtained at the beamline P06 of the Deutsches Elektronen-Synchrotron (DESY, Hamburg, Germany) from two sections C0033-01 and C0033-04 that were wet cut from rock fragment C0033 collected from Cb-type asteroid (162173) Ryugu by JAXA’s Hayabusa2 mission. Trace-element quantifications show that C0033 bulk matrix is CI-like, whereas individual mineral grains (i.e., magnetite, pyrrhotite, dolomite, apatite and breunnerite) show, depending on the respective phase, minor to strong deviations. The non-destructive nature of SR-XRF coupled with a new PyMca (a Python toolkit for XRF data analysis)-based quantification approach, performed in parallel with the synchrotron experiments, proves to be an attractive tool for the initial analysis of samples from return missions, such as Hayabusa2 and OSIRIS-REx, the latter returning material from a B-type asteroid (101955) Bennu in 2023.
  • Pieter Tack, Ella De Pauw, Beverley Tkalcec, Miles Lindner, Benjamin Bazi, Bart Vekemans, Frank Brenker, Marco Di Michiel, Masayuki Uesugi, Hisayoshi Yurimoto, Tomoki Nakamura, Kana Amano, Megumi Matsumoto, Yuri Fujioka, Yuma Enokido, Daisuke Nakashima, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei Ichiro Watanabe, Yuichi Tsuda, Laszlo Vincze
    Earth, Planets and Space 74(1) 2022年12月  
    Millimetre-sized primordial rock fragments originating from asteroid Ryugu were investigated using high energy X-ray fluorescence spectroscopy, providing 2D and 3D elemental distribution and quantitative composition information on the microscopic level. Samples were collected in two phases from two sites on asteroid Ryugu and safely returned to Earth by JAXA’s asteroid explorer Hayabusa2, during which time the collected material was stored and maintained free from terrestrial influences, including exposure to Earth’s atmosphere. Several grains of interest were identified and further characterised to obtain quantitative information on the rare earth element (REE) content within said grains, following a reference-based and computed-tomography-assisted fundamental parameters quantification approach. Several orders of magnitude REE enrichments compared to the mean CI chondrite composition were found within grains that could be identified as apatite phase. Small enrichment of LREE was found for dolomite grains and slight enrichment or depletion for the general matrices within the Ryugu rock fragments A0055 and C0076, respectively. Graphical Abstract: [Figure not available: see fulltext.]
  • Timo Hopp, Nicolas Dauphas, Yoshinari Abe, Jérôme Aléon, Conel M. O’D. Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Motoo Ito, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Frédéric Moynier, Izumi Nakai, Kazuhide Nagashima, David Nesvorný, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Tetsuya Yokoyama, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Science Advances 8(46) 2022年11月18日  
    Little is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids. Growth and migration of the giant planets destabilized nearby planetesimals and ejected some inward to be implanted into the Main Belt. In this framework, most carbonaceous chondrites may have originated from regions around the birthplaces of Jupiter and Saturn, while the distinct isotopic composition of CI chondrites and Ryugu may reflect their formation further away in the disk, owing their presence in the inner Solar System to excitation by Uranus and Neptune.
  • Ryuji Okazaki, Yayoi N. Miura, Yoshinori Takano, Hirotaka Sawada, Kanako Sakamoto, Toru Yada, Keita Yamada, Shinsuke Kawagucci, Yohei Matsui, Ko Hashizume, Akizumi Ishida, Michael W. Broadley, Bernard Marty, David Byrne, Evelyn Furi, Alex Meshik, Olga Pravdivtseva, Henner Busemann, My E. Riebe, Jamie Gilmour, Jisun Park, Ken-ichi Bajo, Kevin Righter, Saburo Sakai, Shun Sekimoto, Fumio Kitajima, Sarah A. Crowther, Naoyoshi Iwata, Naoki Shirai, Mitsuru Ebihara, Reika Yokochi, Kunihiko Nishiizumi, Keisuke Nagao, Jong Ik Lee, Patricia Clay, Akihiro Kano, Marc W. Caffee, Ryu Uemura, Makoto Inagaki, Daniela Krietsch, Colin Maden, Mizuki Yamamoto, Lydia Fawcett, Thomas Lawton, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Hikaru Yabuta, Hisayoshi Yurimoto, Yuichi Tsuda, Sei-Ichiro Watanabe, Masanao Abe, Masahiko Arakawa, Atsushi Fujii, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu-Ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kosuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Ryudo Tsukizaki, Koji Wada, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Hiromichi Soejima, Ayako Iwamae, Daiki Yamamoto, Kasumi Yogata, Miwa Yoshitake, Ryota Fukai, Tomohiro Usui, Trevor Ireland, Harold C. Connolly, Dante S. Lauretta, Shogo Tachibana
    SCIENCE ADVANCES 8(46) 2022年11月  
    The Hayabusa2 spacecraft returned to Earth from the asteroid 162173 Ryugu on 6 December 2020. One day after the recovery, the gas species retained in the sample container were extracted and measured on-site and stored in gas collection bottles. The container gas consists of helium and neon with an extraterrestrial He-3/He-4 and Ne-20/Ne-22 ratios, along with some contaminant terrestrial atmospheric gases. A mixture of solar and Earth's atmospheric gas is the best explanation for the container gas composition. Fragmentation of Ryugu grains within the sample container is discussed on the basis of the estimated amount of indigenous He and the size distribution of the recovered Ryugu grains. This is the first successful return of gas species from a near-Earth asteroid.
  • Masahiko Sato, Yuki Kimura, Satoshi Tanaka, Tadahiro Hatakeyama, Seiji Sugita, Tomoki Nakamuna, Shogo Tachibana, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Fuyuto Terui, Satoru Nakazawa, Sei‐ichiro Watanabe, Yuichi Tsuda
    Journal of Geophysical Research: Planets 127(11) 2022年11月  査読有り
  • Motoo Ito, Naotaka Tomioka, Masayuki Uesugi, Akira Yamaguchi, Naoki Shirai, Takuji Ohigashi, Ming Chang Liu, Richard C. Greenwood, Makoto Kimura, Naoya Imae, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Akira Tsuchiyama, Masahiro Yasutake, Ross Findlay, Ian A. Franchi, James A. Malley, Kaitlyn A. McCain, Nozomi Matsuda, Kevin D. McKeegan, Kaori Hirahara, Akihisa Takeuchi, Shun Sekimoto, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Masahiko Arakawa, Atsushi Fujii, Masaki Fujimoto, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kosuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Osamu Mori, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Ryudo Tsukizaki, Koji Wada, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Ryota Fukai, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Masahiro Nishimura, Hiromichi Soejima, Ayako Iwamae, Daiki Yamamoto, Miwa Yoshitake, Toru Yada, Masanao Abe, Tomohiro Usui
    Nature Astronomy 6(10) 1163-1171 2022年10月  
    Volatile and organic-rich C-type asteroids may have been one of the main sources of Earth’s water. Our best insight into their chemistry is currently provided by carbonaceous chondritic meteorites, but the meteorite record is biased: only the strongest types survive atmospheric entry and are then modified by interaction with the terrestrial environment. Here we present the results of a detailed bulk and microanalytical study of pristine Ryugu particles, brought to Earth by the Hayabusa2 spacecraft. Ryugu particles display a close compositional match with the chemically unfractionated, but aqueously altered, CI (Ivuna-type) chondrites, which are widely used as a proxy for the bulk Solar System composition. The sample shows an intricate spatial relationship between aliphatic-rich organics and phyllosilicates and indicates maximum temperatures of ~30 °C during aqueous alteration. We find that heavy hydrogen and nitrogen abundances are consistent with an outer Solar System origin. Ryugu particles are the most uncontaminated and unfractionated extraterrestrial materials studied so far, and provide the best available match to the bulk Solar System composition.
  • F. Moynier, W. Dai, T. Yokoyama, Y. Hu, M. Paquet, Y. Abe, J. Aléon, C.M.O'D Alexander, S. Amari, Y. Amelin, K.-I. Bajo, M. Bizzarro, A. Bouvier, R.W. Carlson, M. Chaussidon, B.-G. Choi, N. Dauphas, A.M. Davis, T. Di Rocco, W. Fujiya, R. Fukai, I. Gautam, M.K. Haba, Y. Hibiya, H. Hidaka, H. Homma, P. Hoppe, G.R. Huss, K. Ichida, T. Iizuka, T.R. Ireland, A. Ishikawa, M. Ito, S. Itoh, N. Kawasaki, N.T. Kita, K. Kitajima, T. Kleine, S. Komatani, A.N. Krot, M.-C. Liu, Y. Masuda, K.D. McKeegan, M. Morita, K. Motomura, I. Nakai, K. Nagashima, D. Nesvorný, A. Nguyen, L. Nittler, M. Onose, A. Pack, C. Park, L. Piani, L. Qin, S.S. Russell, N. Sakamoto, M. Schönbächler, L. Tafla, H. Tang, K. Terada, Y. Terada, T. Usui, S. Wada, M. Wadhwa, R.J. Walker, K. Yamashita, Q.-Z. Yin, S. Yoneda, E.D. Young, H. Yui, A.-C. Zhang, T. Nakamura, H. Naraoka, T. Noguchi, R. Okazaki, K. Sakamoto, H. Yabuta, M. Abe, A. Miyazaki, A. Nakato, M. Nishimura, T. Okada, T. Yada, K. Yogata, S. Nakazawa, T. Saiki, S. Tanaka, F. Terui, Y. Tsuda, S.-I. Watanabe, M. Yoshikawa, S. Tachibana, H. Yurimoto
    Geochemical Perspectives Letters 24 1-6 2022年10月  査読有り
    The Hayabusa2 spacecraft has returned samples from the Cb-type asteroid (162173) Ryugu to Earth. Previous petrological and chemical analyses support a close link between Ryugu and CI chondrites that are presumed to be chemically the most primitive meteorites with a solar-like composition. However, Ryugu samples are highly enriched in Ca compared to typical CI chondrites. To identify the cause of this discrepancy, here we report stable Ca isotopic data (expressed as δ44/40CaSRM915a) for returned Ryugu samples collected from two sites. We found that samples from both sites have similar δ44/40CaSRM915a (0.58 ± 0.03 % and 0.55 ± 0.08 %, 2 s.d.) that fall within the range defined by CIs. This isotopic similarity suggests that the Ca budget of CIs and Ryugu samples is dominated by carbonates, and the variably higher Ca contents in Ryugu samples are due to the abundant carbonates. Precipitation of carbonates on Ryugu likely coincided with a major episode of aqueous activity dated to have occurred ∼5 Myr after Solar System formation. Based on the pristine Ryugu samples, the average δ44/40CaSRM915a of the Solar System is defined to be 0.57 ± 0.04 % (2 s.d.).
  • Ming-Chang Liu, Kaitlyn A. McCain, Nozomi Matsuda, Akira Yamaguchi, Makoto Kimura, Naotaka Tomioka, Motoo Ito, Masayuki Uesugi, Naoya Imae, Naoki Shirai, Takuji Ohigashi, Richard C. Greenwood, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Kaori Hirahara, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Satoru Nakazawa, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Akiko Miyazaki, Masahiro Nishimura, Toru Yada, Masanao Abe, Tomohiro Usui, Sei-ichiro Watanabe, Yuichi Tsuda
    Nature Astronomy 6(10) 1172-1177 2022年9月1日  
  • Daisuke Nakashima, Tomoki Nakamura, Mingming Zhang, Noriko Kita, Takashi Mikouchi, Hideto Yoshida, Yuma Enokido, Tomoyo Morita, Mizuha Kikuiri, Kana Amano, Eiichi Kagawa, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Satoru Nakazawa, Fuyuto Terui, Hisayoshi Yurimoto, Takaaki Noguchi, Hikaru Yabuta, Hiroshi Naraoka, Ryuji Okazaki, Kanako Sakamoto, Sei-ichiro Watanabe, Shogo Tachibana, Yuichi Tsuda
    2022年8月29日  
    Abstract Chondrule-like objects and Ca-Al-rich inclusions (CAIs) are discovered in the retuned samples from asteroid Ryugu. Three chondrule-like objects, which are 16O-rich and -poor with D17O (= d17O – 0.52 × d18O) values of ~ − 23‰ and ~ − 3‰, are dominated by Mg-rich olivine, resembling what proposed as earlier generations of chondrules. The 16O-rich objects are likely to be melted amoeboid olivine aggregates that escaped from incorporation into 16O-poor chondrule precursor dust. Two CAIs composed of spinel, hibonite, and perovskite are 16O-rich with D17O of ~ − 23‰ and possibly as old as the oldest CAIs. The chondrule-like objects and CAIs (< 30 µm) are as small as those from comets, suggesting radial transport favoring smaller objects from the inner solar nebula to the formation location of the Ryugu original parent body, which is farther from the Sun and scarce in chondrules. The transported objects may have been mostly destroyed during aqueous alteration.
  • Aiko NAKATO, Toru Yada, Masahiro Nishimura, Kasumi Yogata, Akiko Miyazaki, Kana Nagashima, Kentaro Hatakeda, Kazuya Kumagai, Yuya Hitomi, Hiromichi Soejima, Jean-Pierre Bibring, Cedric Pilorget, Vincent Hamm, Rosario Brunetto, Lucie Riu, Lionel Lourit, Damien Loizeau, Tania Le Pivert-Jolivet, Guillaume Lequertier, Aurelie Moussi-Soffys, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Sei-ichiro Watanabe, Yuichi Tsuda
    2022年8月3日  
    Abstract Hayabusa2 spacecraft successfully collected rock samples through two touchdowns from the surface of C-type near-Earth asteroid 162173 Ryugu and brought them back to Earth in 2020. At the Extraterrestrial Sample Curation Center in JAXA, we performed initial description to all samples to obtain the fundamental information and prepare the database for sample allocation. We propose morphological classifications for the returned samples based on the initial description of 205 grains described in the first 6 months. The returned samples can be distinguished by four morphological characteristics: dark, glossy, bright, and white. According to coordinated study of initial description and detailed investigation by scanning electron microscopy and X-ray diffraction analysis in this study, these features reflect the differences in the degree of space weathering and mineral assemblages. The degree of space weathering of the four studied grains is heterogeneous: weak for A0042 (dark group) and C0041 (white group); moderate for C0094 (glossy); and severe for A0017 (bright). The white phase in a grain belonging to white group is identified as large carbonate minerals. This is the first effort to classify Ryugu returned samples. Based on these results, researchers can estimate sample characteristics only from the information on the JAXA curation public database. It could be an important reference for sample selection for further investigation.
  • Jin Beniyama, Shigeyuki Sako, Ryou Ohsawa, Satoshi Takita, Naoto Kobayashi, Shin Ichiro Okumura, Seitaro Urakawa, Makoto Yoshikawa, Fumihiko Usui, Fumi Yoshida, Mamoru Doi, Yuu Niino, Toshikazu Shigeyama, Masaomi Tanaka, Nozomu Tominaga, Tsutomu Aoki, Noriaki Arima, Ko Arimatsu, Toshihiro Kasuga, Sohei Kondo, Yuki Mori, Hidenori Takahashi, Jun Ichi Watanabe
    Publications of the Astronomical Society of Japan 74(4) 877-903 2022年8月1日  
    We report the results of video observations of tiny (diameter less than 100 m) near-Earth objects (NEOs) with Tomo-e Gozen on the Kiso 105 cm Schmidt telescope. The rotational period of a tiny asteroid reflects its dynamical history and physical properties since smaller objects are sensitive to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. We carried out video observations of 60 tiny NEOs at 2 fps from 2018 to 2021 and successfully derived the rotational periods and axial ratios of 32 NEOs including 13 fast rotators with rotational periods less than 60 s. The fastest rotator found during our survey is 2020 HS7 with a rotational period of 2.99 s. We statistically confirmed that there is a certain number of tiny fast rotators in the NEO population, which have been missed with all previous surveys. We have discovered that the distribution of the tiny NEOs in a diameter and rotational period (D-P) diagram is truncated around a period of 10 s. The truncation with a flat-top shape is not explained well by either a realistic tensile strength of NEOs or the suppression of YORP by meteoroid impacts. We propose that the dependence of the tangential YORP effect on the rotational period potentially explains the observed pattern in the D-P diagram.
  • A. Galiano, E. Palomba, F. Dirri, A. Longobardo, K. Kitazato, T. Iwata, M. Matsuoka, T. Hiroi, D. Takir, T. Nakamura, M. Abe, M. Ohtake, S. Matsuura, S. Watanabe, M. Yoshikawa, T. Saiki, S. Tanaka, T. Okada, Y. Yamamoto, Y. Takei, K. Shirai, N. Hirata, K. Matsumoto, Y. Tsuda
    Monthly Notices of the Royal Astronomical Society 514(4) 6173-6182 2022年8月1日  
    The JAXA Hayabusa2 mission accomplished the formation of an artificial crater on the asteroid Ryugu. The aim of this work is to analyse the area surrounding the artificial crater and reveal spectral variability compared to the same region before the crater formation, to mineralogically and physically characterize the subsurface exposed material. The crater's investigation focused on the analysis of two regions corresponding to the inner part of crater (the pit and the crater wall/floor), two areas related to ejecta deposited close to the crater, two areas of ejecta moved far from the crater, and two external areas. Each area was investigated both before and after the crater formation, by the study of the photometrically corrected spectral parameters: the 1.9 μm reflectance, the near-infrared spectral slope, and the depth of the bands at 2.7 and 2.8 μm. The subsurface material of the post-crater areas shows deeper absorption bands, a decrease in reflectance, and a reddening in spectral slope with respect to the surface material of pre-crater areas. The subsurface regolith could have experienced a lower OH devolatilization due to space weathering and/or could be composed of finer dark grains than the surface layer. The ejecta reached distances of ~20 m from the impact point, mainly moving in the northern direction; nevertheless, a few ejecta also reached the south-eastern part of crater.
  • Patrick Michel, Michael Küppers, Adriano Campo Bagatin, Benoit Carry, Sébastien Charnoz, Julia de Leon, Alan Fitzsimmons, Paulo Gordo, Simon F. Green, Alain Hérique, Martin Juzi, Özgür Karatekin, Tomas Kohout, Monica Lazzarin, Naomi Murdoch, Tatsuaki Okada, Ernesto Palomba, Petr Pravec, Colin Snodgrass, Paolo Tortora, Kleomenis Tsiganis, Stephan Ulamec, Jean Baptiste Vincent, Kai Wünnemann, Yun Zhang, Sabina D. Raducan, Elisabetta Dotto, Nancy Chabot, Andy F. Cheng, Andy Rivkin, Olivier Barnouin, Carolyn Ernst, Angela Stickle, Derek C. Richardson, Cristina Thomas, Masahiko Arakawa, Hirdy Miyamoto, Akiko Nakamura, Seiji Sugita, Makoto Yoshikawa, Paul Abell, Erik Asphaug, Ronald Louis Ballouz, William F. Bottke, Dante S. Lauretta, Kevin J. Walsh, Paolo Martino, Ian Carnelli
    Planetary Science Journal 3(7) 2022年7月1日  
    Hera is a planetary defense mission under development in the Space Safety and Security Program of the European Space Agency for launch in 2024 October. It will rendezvous in late 2026 December with the binary asteroid (65803) Didymos and in particular its moon, Dimorphos, which will be impacted by NASA’s DART spacecraft on 2022 September 26 as the first asteroid deflection test. The main goals of Hera are the detailed characterization of the physical properties of Didymos and Dimorphos and of the crater made by the DART mission, as well as measurement of the momentum transfer efficiency resulting from DART’s impact. The data from the Hera spacecraft and its two CubeSats will also provide significant insights into asteroid science and the evolutionary history of our solar system. Hera will perform the first rendezvous with a binary asteroid and provide new measurements, such as radar sounding of an asteroid interior, which will allow models in planetary science to be tested. Hera will thus provide a crucial element in the global effort to avert future asteroid impacts at the same time as providing world-leading science.
  • Kaitlyn McCain, Nozomi Matsuda, Ming-Chang Liu, Kevin McKeegan, Akira Yamaguchi, Makoto Kimura, Naotaka Tomioka, Motoo Ito, Naoya Imae, Masayuki Uesugi, Naoki Shirai, Takuji Ohigashi, Richard Greenwood, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Kaori Hirahara, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Satoru Nakazawa, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Akiko Miyazaki, Masahiro Nishimura, Toru Yada, Masanao Abe, Tomohiro Usui, Sei-ichiro Watanabe, Yuichi Tsuda
    2022年6月8日  
  • Shota Kikuchi, Sei-ichiro Watanabe, Koji Wada, Takanao Saiki, Hikaru Yabuta, Seiji Sugita, Masanao Abe, Masahiko Arakawa, Yuichiro Cho, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Chikatoshi Honda, Rie Honda, Ko Ishibashi, Yoshiaki Ishihara, Takahiro Iwata, Toshihiko Kadono, Shingo Kameda, Kohei Kitazato, Toru Kouyama, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Tomoki Nakamura, Satoru Nakazawa, Noriyuki Namiki, Rina Noguchi, Kazunori Ogawa, Naoko Ogawa, Tatsuaki Okada, Go Ono, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Shogo Tachibana, Yuto Takei, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Manabu Yamada, Yukio Yamamoto, Yasuhiro Yokota, Kent Yoshikawa, Makoto Yoshikawa, Yuichi Tsuda
    Planetary and Space Science 219 105519-105519 2022年6月  
  • Yasuhiro Nishikawa, Masa Yuki Yamamoto, Eleanor K. Sansom, Hadrien A.R. Devillepoix, Martin C. Towner, Yoshihiro Hiramatsu, Taichi Kawamura, Kazuhisa Fujita, Makoto Yoshikawa, Yoshiaki Ishihara, Islam Hamama, Norihisa Segawa, Yoshihiro Kakinami, Hiroshi Katao, Yuichiro Inoue, Philip A. Bland
    Publications of the Astronomical Society of Japan 74(2) 308-317 2022年4月  
    On 2020 December 5 at 17:28 UTC, Japan Aerospace Exploration Agency's Hayabusa2 sample return capsule (SRC) re-entered Earth's atmosphere. The capsule passed through the atmosphere at supersonic speeds, emitting sound and light. The inaudible sound was recorded by infrasound sensors installed by Kochi University of Technology and Curtin University. Based on analysis of the recorded infrasound, the trajectory of the SRC in two cases, one with constant-velocity linear motion and the other with silent flight, could be estimated with an accuracy of 0° 5 in elevation and 1° in direction. A comparison with optical observations suggests a state of flight in which no light is emitted but sound is emitted. In this paper, we describe the method and results of the trajectory estimation.
  • Hiroshi Takeuchi, Sho Taniguchi, Tsutomu Ichikawa, Julie Bellerose, Zahi Tarzi, Davide Farnocchia, Makoto Yoshikawa, Takanao Saiki, Yuichi Tsuda
    Hayabusa2 Asteroid Sample Return Mission 73-94 2022年4月  査読有り
  • Tatsuhiro Michikami, Axel Hagermann, Tomokatsu Morota, Yasuhiro Yokota, Seitaro Urakawa, Hiroyuki Okamura, Naoya Tanabe, Koki Yumoto, Tatsuki Ebihara, Yuichiro Cho, Carolyn M. Ernst, Masahiko Hayakawa, Masatoshi Hirabayashi, Naru Hirata, Chikatoshi Honda, Rie Honda, Shingo Kameda, Masanori Kanamaru, Hiroshi Kikuchi, Shota Kikuchi, Toru Kouyama, Moe Matsuoka, Hideaki Miyamoto, Takaaki Noguchi, Rina Noguchi, Kazunori Ogawa, Tatsuaki Okada, Naoya Sakatani, Sho Sasaki, Hirotaka Sawada, Chiho Sugimoto, Hidehiko Suzuki, Satoshi Tanaka, Eri Tatsumi, Akira Tsuchiyama, Yuichi Tsuda, Sei-ichiro Watanabe, Manabu Yamada, Makoto Yoshikawa, Kazuo Yoshioka, Seiji Sugita
    Icarus 115007-115007 2022年3月  
  • Tachibana, S., Sawada, H., Okazaki, R., Takano, Y., Sakamoto, K., Miura, Y. N., Okamoto, C., Yano, H., Yamanouchi, S., Michel, P., Zhang, Y., Schwartz, S., Thuillet, F., Yurimoto, H., Nakamura, T., Noguchi, T., Yabuta, H., Naraoka, H., Tsuchiyama, A., Imae, N., Kurosawa, K., Nakamura, A. M., Ogawa, K., Sugita, S., Morota, T., Honda, R., Kameda, S., Tatsumi, E., Cho, Y., Yoshioka, K., Yokota, Y., Hayakawa, M., Matsuoka, M., Sakatani, N., Yamada, M., Kouyama, T., Suzuki, H., Honda, C., Yoshimitsu, T., Kubota, T., Demura, H., Yada, T., Nishimura, M., Yogata, K., Nakato, A., Yoshitake, M., Suzuki, A. I., Furuya, S., Hatakeda, K., Miyazaki, A., Kumagai, K., Okada, T., Abe, M., Usui, T., Ireland, T. R., Fujimoto, M., Yamada, T., Arakawa, M., Connolly, H. C., Fujii, A., Hasegawa, S., Hirata, N., Hirata, N., Hirose, C., Hosoda, S., Iijima, Y., Ikeda, H., Ishiguro, M., Ishihara, Y., Iwata, T., Kikuchi, S., Kitazato, K., Lauretta, D. S., Libourel, G., Marty, B., Matsumoto, K., Michikami, T., Mimasu, Y., Miura, A., Mori, O., Nakamura-Messenger, K., Namiki, N., Nguyen, A. N., Nittler, L. R., Noda, H., Noguchi, R., Ogawa, N., Ono, G., Ozaki, M., Senshu, H., Shimada, T., Shimaki, Y., Shirai, K., Soldini, S., Takahashi, T., Takei, Y., Takeuchi, H., Tsukizaki, R., Wada, K., Yamamoto, Y., Yoshikawa, K., Yumoto, K., Zolensky, M. E., Nakazawa, S., Terui, F., Tanaka, S., Saiki, T., Yoshikawa, M., Watanabe, S., Tsuda, Y.
    Science 375(6584) 1011-1016 2022年3月  
    The Hayabusa2 spacecraft investigated the C-type (carbonaceous) asteroid (162173) Ryugu. The mission performed two landing operations to collect samples of surface and subsurface material, the latter exposed by an artificial impact. We present images of the second touchdown site, finding that ejecta from the impact crater was present at the sample location. Surface pebbles at both landing sites show morphological variations ranging from rugged to smooth, similar to Ryugu’s boulders, and shapes from quasi-spherical to flattened. The samples were returned to Earth on 6 December 2020. We describe the morphology of >5 grams of returned pebbles and sand. Their diverse color, shape, and structure are consistent with the observed materials of Ryugu; we conclude that they are a representative sample of the asteroid....
  • Eleanor K. Sansom, Hadrien A.R. Devillepoix, Masa Yuki Yamamoto, Shinsuke Abe, Satoshi Nozawa, Martin C. Towner, Martin Cupák, Yoshihiro Hiramatsu, Taichi Kawamura, Kazuhisa Fujita, Makoto Yoshikawa, Yoshiaki Ishihara, Islam Hamama, Norihisa Segawa, Yoshihiro Kakinami, Muneyoshi Furumoto, Hiroshi Katao, Yuichiro Inoue, Andrew Cool, Geoffrey Bonning, Robert M. Howie, Phil A. Bland
    Publications of the Astronomical Society of Japan 74(1) 50-63 2022年2月1日  
    On 2020 December 5 at 17:28 UTC, the Japan Aerospace Exploration Agency's Hayabusa-2 sample return capsule came back to the Earth. It re-entered the atmosphere over South Australia, visible for 53 seconds as a fireball from near the Northern Territory border toward Woomera where it landed in the the Woomera military test range. A scientific observation campaign was planned to observe the optical, seismo-acoustic, radio, and high energy particle phenomena associated with the entry of an interplanetary object. A multi-institutional collaboration between Australian and Japanese universities resulted in the deployment of 49 instruments, with a further 13 permanent observation sites. The campaign successfully recorded optical, seismo-acoustic, and spectral data for this event which will allow an in-depth analysis of the effects produced by interplanetary objects impacting the Earth's atmosphere. This will allow future comparison and insights to be made with natural meteoroid objects.
  • C. Pilorget, T. Okada, V. Hamm, R. Brunetto, T. Yada, D. Loizeau, L. Riu, T. Usui, A. Moussi-Soffys, K. Hatakeda, A. Nakato, K. Yogata, M. Abe, A. Aléon-Toppani, J. Carter, M. Chaigneau, B. Crane, B. Gondet, K. Kumagai, Y. Langevin, C. Lantz, T. Le Pivert-Jolivet, G. Lequertier, L. Lourit, A. Miyazaki, M. Nishimura, F. Poulet, M. Arakawa, N. Hirata, K. Kitazato, S. Nakazawa, N. Namiki, T. Saiki, S. Sugita, S. Tachibana, S. Tanaka, M. Yoshikawa, Y. Tsuda, S. Watanabe, J.-P. Bibring
    Nature Astronomy 6(2) 221-225 2022年2月  
  • Toru Yada, Masanao Abe, Tatsuaki Okada, Aiko Nakato, Kasumi Yogata, Akiko Miyazaki, Kentaro Hatakeda, Kazuya Kumagai, Masahiro Nishimura, Yuya Hitomi, Hiromichi Soejima, Miwa Yoshitake, Ayako Iwamae, Shizuho Furuya, Masayuki Uesugi, Yuzuru Karouji, Tomohiro Usui, Tasuku Hayashi, Daiki Yamamoto, Ryota Fukai, Seiji Sugita, Yuichiro Cho, Koki Yumoto, Yuna Yabe, Jean-Pierre Bibring, Cedric Pilorget, Vincent Hamm, Rosario Brunetto, Lucie Riu, Lionel Lourit, Damien Loizeau, Guillaume Lequertier, Aurelie Moussi-Soffys, Shogo Tachibana, Hirotaka Sawada, Ryuji Okazaki, Yoshinori Takano, Kanako Sakamoto, Yayoi N. Miura, Hajime Yano, Trevor R. Ireland, Tetsuya Yamada, Masaki Fujimoto, Kohei Kitazato, Noriyuki Namiki, Masahiko Arakawa, Naru Hirata, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Hikaru Yabuta, Hiroshi Naraoka, Motoo Ito, Eizo Nakamura, Kentaro Uesugi, Katsura Kobayashi, Tatsuhiro Michikami, Hiroshi Kikuchi, Naoyuki Hirata, Yoshiaki Ishihara, Koji Matsumoto, Hirotomo Noda, Rina Noguchi, Yuri Shimaki, Kei Shirai, Kazunori Ogawa, Koji Wada, Hiroki Senshu, Yukio Yamamoto, Tomokatsu Morota, Rie Honda, Chikatoshi Honda, Yasuhiro Yokota, Moe Matsuoka, Naoya Sakatani, Eri Tatsumi, Akira Miura, Manabu Yamada, Atsushi Fujii, Chikako Hirose, Satoshi Hosoda, Hitoshi Ikeda, Takahiro Iwata, Shota Kikuchi, Yuya Mimasu, Osamu Mori, Naoko Ogawa, Go Ono, Takanobu Shimada, Stefania Soldini, Tadateru Takahashi, Yuto Takei, Hiroshi Takeuchi, Ryudo Tsukizaki, Kent Yoshikawa, Fuyuto Terui, Satoru Nakazawa, Satoshi Tanaka, Takanao Saiki, Makoto Yoshikawa, Sei-ichiro Watanabe, Yuichi Tsuda
    Nature Astronomy 6(2) 214-220 2022年2月  
    Abstract C-type asteroids1 are considered to be primitive small Solar System bodies enriched in water and organics, providing clues to the origin and evolution of the Solar System and the building blocks of life. C-type asteroid 162173 Ryugu has been characterized by remote sensing2–7 and on-asteroid measurements8,9 with Hayabusa2 (ref. 10). However, the ground truth provided by laboratory analysis of returned samples is invaluable to determine the fine properties of asteroids and other planetary bodies. We report preliminary results of analyses on returned samples from Ryugu of the particle size distribution, density and porosity, spectral properties and textural properties, and the results of a search for Ca–Al-rich inclusions (CAIs) and chondrules. The bulk sample mainly consists of rugged and smooth particles of millimetre to submillimetre size, confirming that the physical and chemical properties were not altered during the return from the asteroid. The power index of its size distribution is shallower than that of the surface boulder observed on Ryugu11, indicating differences in the returned Ryugu samples. The average of the estimated bulk densities of Ryugu sample particles is 1,282 ± 231 kg m−3, which is lower than that of meteorites12, suggesting a high microporosity down to the millimetre scale, extending centimetre-scale estimates from thermal measurements5,9. The extremely dark optical to near-infrared reflectance and spectral profile with weak absorptions at 2.7 and 3.4 μm imply a carbonaceous composition with indigenous aqueous alteration, matching the global average of Ryugu3,4 and confirming that the sample is representative of the asteroid. Together with the absence of submillimetre CAIs and chondrules, these features indicate that Ryugu is most similar to CI chondrites but has lower albedo, higher porosity and more fragile characteristics.
  • Shota Kikuchi, Yuya Mimasu, Yuto Takei, Takanao Saiki, Masatoshi Hirabayashi, Makoto Yoshikawa, Sei Ichiro Watanabe, Satoshi Tanaka, Yuichi Tsuda
    Proceedings of the International Astronautical Congress, IAC 2022-September 2022年  
    The Hayabusa2 extended mission is designed to rendezvous with the fast-rotating asteroid 1998 KY26 in 2031. The asteroid's diameter and rotation period are as small as 20-40 m and 10:7 min, respectively. Consequently, the low gravity and rapid rotation of the asteroid form distinctive dynamical environments. This paper rst characterizes orbital and surface environments about 1998 KY26. Then, possible orbital operations are investigated, particularly focusing on the hovering and descent operations. Our research, therefore, contributes to exploring one of the smallest members of the solar system.
  • A. Longobardo, E. Palomba, A. Galiano, F. Dirri, A. Zinzi, M. D'Amore, D. Domingue, K. Kitazato, Y. Yokota, S. E. Schroeder, T. Iwata, M. Matsuoka, T. Hiroi, D. Takir, T. Nakamura, M. Abe, M. Ohtake, S. Matsuura, S. Watanabe, M. Yoshikawa, T. Saiki, S. Tanaka, T. Okada, Y. Yamamoto, Y. Takei, K. Shirai, N. Hirata, N. Hirata, K. Matsumoto, Y. Tsuda
    Astronomy and Astrophysics 666 2022年  査読有り
    Context. JAXA's Hayabusa2 mission rendezvoused the Ryugu asteroid for 1.5 years to clarify the carbonaceous asteroids' record for Solar System origin and evolution. Aims. We studied the photometric behavior of the spectral parameters characterizing the near-infrared (NIR) spectra of Ryugu provided by the Hayabusa2/NIRS3 instrument, that is to say 1.9 µm reflectance, 2.7 and 2.8 µm band depths (ascribed to phyllosilicates), and NIR slope. Methods. For each parameter, we applied the following empirical approach: (1) retrieval of the equigonal albedo by applying the Akimov disk function (this step was only performed for the reflectance photometric correction); (2) retrieval of the median spectral parameter value at each phase angle bin; and (3) retrieval of the phase function by a linear fit. Results. Ryugu's phase function shows a steepness similar to Ceres, according to the same taxonomy of the two asteroids. Band depths decrease with increasing phase angle: this trend is opposite to that observed on other asteroids explored by space missions and is ascribed to the very dark albedo. NIR and visible phase reddening are similar, contrary to other asteroids, where visible phase reddening is larger: this could be due to surface darkness or to particle smoothness. Albedo and band depths are globally uncorrelated, but locally anticorrelated. A correlation between darkening and reddening is observed.
  • Makoto Yoshikawa, Elizabeth Tasker, Satoshi Hosoda, Moe Matsuoka, Yasuhiro Yokota, Satoru Nakazawa, Yuichi Tsuda
    Hayabusa2 Asteroid Sample Return Mission: Technological Innovation and Advances 541-556 2022年1月1日  
    Hayabusa2 was a mission with a series of challenging operations and a scientific goal that related to the origins of life. These attributes presented an opportunity to engage with a wide range of people beyond the scientific community who might be inspired by the difficulty of the engineering or relate to a search for how life on Earth began. The mission's outreach program aimed to share news throughout the mission in Japan and overseas, with regular updates on mission operations, real-time events for an immersive feel during major operations and campaigns to allow people to connect with the team.
  • Yuichi Tsuda, Makoto Yoshikawa, Masatoshi Hirabayashi, Shota Kikuchi
    Hayabusa2 Asteroid Sample Return Mission: Technological Innovation and Advances 1-3 2022年1月1日  
    Hayabusa2 is the second Japanese small body sample return exploration mission, targeting the carbonaceous asteroid (162173) Ryugu. The spacecraft was launched with Japan's H2A launch vehicle from the Tanegashima Space Center in December 2014 and arrived at Ryugu in June 2018. After completing detailed remote sensing observations, two sampling operations, one kinetic impact experiment, and multiple deployments of robotic smaller probes, the spacecraft left the asteroid in November 2019. It was a six-year journey that the spacecraft traveled approximately 5.2 billion km. In December 2020, the spacecraft returned to the Earth with extraterrestrial materials. A special volume is developed as a primary reference to collect engineering efforts from mission planning through in-orbit operations that made Hayabusa2’s achievements. This chapter introduces a brief overview of this book.
  • Eizo Nakamura, Katsura Kobayashi, Ryoji Tanaka, Tak Kunihiro, Hiroshi Kitagawa, Christian Potiszil, Tsutomu Ota, Chie Sakaguchi, Masahiro Yamanaka, Dilan M. Ratnayake, Havishk Tripathi, Rahul Kumar, Maya Liliana Avramescu, Hidehisa Tsuchida, Yusuke Yachi, Hitoshi Miura, Masanao Abe, Ryota Fukai, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Hiromichi Soejima, Seiji Sugita, Ayako Suzuki, Tomohiro Usui, Toru Yada, Daiki Yamamoto, Kasumi Yogata, Miwa Yoshitake, Masahiko Arakawa, Atsushi Fujii, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu Ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kosuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Ryudo Tsukizaki, Koji Wada, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Masaki Fujimoto, Sei Ichiro Watanabe, Yuichi Tsuda
    Proceedings of the Japan Academy Series B: Physical and Biological Sciences 98(6) 227-282 2022年  
    Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, ∆17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.
  • Yuichi Tsuda, Satoru Nakazawa, Makoto Yoshikawa, Takanao Saiki, Fuyuto Terui, Masahiko Arakawa, Masanao Abe, Kohei Kitazato, Seiji Sugita, Shogo Tachibana, Noriyuki Namiki, Satoshi Tanaka, Tatsuaki Okada, Hitoshi Ikeda, Sei-ichiro Watanabe
    Hayabusa2 Asteroid Sample Return Mission 5-23 2022年  
  • Yuya Mimasu, Shota Kikuchi, Yuto Takei, Takanao Saiki, Sei-ichiro Watanabe, Satoshi Tanaka, Masatoshi Hirabayashi, Naoya Sakatani, Toru Kouyama, Makoto Yoshikawa, Satoru Nakazawa, Yuichi Tsuda
    Hayabusa2 Asteroid Sample Return Mission 557-571 2022年  
  • Takanao Saiki, Yuto Takei, Atsushi Fujii, Shota Kikuchi, Fuyuto Terui, Yuya Mimasu, Naoko Ogawa, Go Ono, Kent Yoshikawa, Satoshi Tanaka, Makoto Yoshikawa, Satoru Nakazawa, Yuichi Tsuda
    Hayabusa2 Asteroid Sample Return Mission 113-136 2022年  
  • Takanao Saiki, Hirotaka Sawada, Kazunori Ogawa, Yuya Mimasu, Yuto Takei, Masahiko Arakawa, Toshihiko Kadono, Koji Wada, Atsushi Fujii, Fuyuto Terui, Naoko Ogawa, Go Ono, Kei Shirai, Rie Honda, Ko Ishibashi, Naoya Sakatani, Kent Yoshikawa, Makoto Yoshikawa, Satoru Nakazawa, Yuichi Tsuda
    Hayabusa2 Asteroid Sample Return Mission 291-312 2022年  
  • Stefania Soldini, Hiroshi Takeuchi, Sho Taniguchi, Shota Kikuchi, Yuto Takei, Go Ono, Takafumi Ohnishi, Takanao Saiki, Yuichi Tsuda, Fuyuto Terui, Naoko Ogawa, Yuya Mimasu, Atsushi Fujii, Satoru Nakazawa, Tomohiro Yamaguchi, Kent Yoshikawa, Yusuke Oki, Chikako Hirose, Hirotaka Sawada, Makoto Yoshikawa
    Hayabusa2 Asteroid Sample Return Mission 241-257 2022年  
  • Eri Tatsumi, Naoya Sakatani, Lucie Riu, Moe Matsuoka, Rie Honda, Tomokatsu Morota, Shingo Kameda, Tomoki Nakamura, Michael Zolensky, Rosario Brunetto, Takahiro Hiroi, Sho Sasaki, Sei’ichiro Watanabe, Satoshi Tanaka, Jun Takita, Cédric Pilorget, Julia de León, Marcel Popescu, Juan Luis Rizos, Javier Licandro, Ernesto Palomba, Deborah Domingue, Faith Vilas, Humberto Campins, Yuichiro Cho, Kazuo Yoshioka, Hirotaka Sawada, Yasuhiro Yokota, Masahiko Hayakawa, Manabu Yamada, Toru Kouyama, Hidehiko Suzuki, Chikatoshi Honda, Kazunori Ogawa, Kohei Kitazato, Naru Hirata, Naoyuki Hirata, Yuichi Tsuda, Makoto Yoshikawa, Takanao Saiki, Fuyuto Terui, Satoru Nakazawa, Yuto Takei, Hiroshi Takeuchi, Yukio Yamamoto, Tatsuaki Okada, Yuri Shimaki, Kei Shirai, Seiji Sugita
    Nature Communications 12(1) 2021年12月  
    <title>Abstract</title>Ryugu is a carbonaceous rubble-pile asteroid visited by the Hayabusa2 spacecraft. Small rubble pile asteroids record the thermal evolution of their much larger parent bodies. However, recent space weathering and/or solar heating create ambiguities between the uppermost layer observable by remote-sensing and the pristine material from the parent body. Hayabusa2 remote-sensing observations find that on the asteroid (162173) Ryugu both north and south pole regions preserve the material least processed by space weathering, which is spectrally blue carbonaceous chondritic material with a 0–3% deep 0.7-µm band absorption, indicative of Fe-bearing phyllosilicates. Here we report that spectrally blue Ryugu’s parent body experienced intensive aqueous alteration and subsequent thermal metamorphism at 570–670 K (300–400 °C), suggesting that Ryugu’s parent body was heated by radioactive decay of short-lived radionuclides possibly because of its early formation 2–2.5 Ma. The samples being brought to Earth by Hayabusa2 will give us our first insights into this epoch in solar system history.
  • Shota Kikuchi, Takanao Saiki, Yuto Takei, Fuyuto Terui, Naoko Ogawa, Yuya Mimasu, Go Ono, Kent Yoshikawa, Hirotaka Sawada, Hiroshi Takeuchi, Hitoshi Ikeda, Atsushi Fujii, Seiji Sugita, Tomokatsu Morota, Manabu Yamada, Rie Honda, Yasuhiro Yokota, Naoya Sakatani, Shingo Kameda, Toru Kouyama, Naru Hirata, Naoyuki Hirata, Kei Shirai, Kohei Kitazato, Satoru Nakazawa, Makoto Yoshikawa, Satoshi Tanaka, Koji Wada, Sei ichiro Watanabe, Yuichi Tsuda
    Advances in Space Research 68(8) 3093-3140 2021年10月15日  
    One of the major challenges in the Hayabusa2 sample-return mission was the second touchdown on the asteroid Ryugu, which was designed to collect subsurface materials near the artificial crater formed by a small carry-on impactor. Due to engineering and scientific requirements, a narrow area with a radius as small as 3.5 m was selected as the target landing site. To achieve pinpoint touchdown at the selected site, an artificial landmark called a target marker (TM) was used for optical navigation. The key to a successful touchdown was precise deployment of the TM in the microgravity environment of the asteroid. This study therefore investigates a viable trajectory for TM deployment, incorporating the uncertainty in the impact and rebound motions of the TM. Following the TM deployment operation, a detailed survey of the landing site around the TM settlement point is performed to assess the terrain conditions. To guarantee the observation quality and spacecraft safety, multi-impulse low-altitude trajectories are introduced in this paper, along with covariance analyses based on the high-fidelity polyhedral gravity model of Ryugu. Subsequently, a pinpoint touchdown trajectory that satisfies various engineering requirements, such as landing accuracy and velocity, is designed, taking advantage of optical TM tracking. The feasibility of the touchdown sequence is further validated by a Monte Carlo dispersion analysis. Consequently, Hayabusa2 successfully touched down within the target site on 11 July 2019. The current research also conducts a post-operation trajectory reconstruction based on the flight data to demonstrate the actual guidance performance in the TM deployment, landing site observations, and pinpoint touchdown.
  • N. Sakatani, S. Tanaka, T. Okada, T. Fukuhara, L. Riu, S. Sugita, R. Honda, T. Morota, S. Kameda, Y. Yokota, E. Tatsumi, K. Yumoto, N. Hirata, A. Miura, T. Kouyama, H. Senshu, Y. Shimaki, T. Arai, J. Takita, H. Demura, T. Sekiguchi, T. G. Müller, A. Hagermann, J. Biele, M. Grott, M. Hamm, M. Delbo, W. Neumann, M. Taguchi, Y. Ogawa, T. Matsunaga, T. Wada, S. Hasegawa, J. Helbert, N. Hirata, R. Noguchi, M. Yamada, H. Suzuki, C. Honda, K. Ogawa, M. Hayakawa, K. Yoshioka, M. Matsuoka, Y. Cho, H. Sawada, K. Kitazato, T. Iwata, M. Abe, M. Ohtake, S. Matsuura, K. Matsumoto, H. Noda, Y. Ishihara, K. Yamamoto, A. Higuchi, N. Namiki, G. Ono, T. Saiki, H. Imamura, Y. Takagi, H. Yano, K. Shirai, C. Okamoto, S. Nakazawa, Y. Iijima, M. Arakawa, K. Wada, T. Kadono, K. Ishibashi, F. Terui, S. Kikuchi, T. Yamaguchi, N. Ogawa, Y. Mimasu, K. Yoshikawa, T. Takahashi, Y. Takei, A. Fujii, H. Takeuchi, Y. Yamamoto, C. Hirose, S. Hosoda, O. Mori, T. Shimada, S. Soldini, R. Tsukizaki, M. Ozaki, S. Tachibana, H. Ikeda, M. Ishiguro, H. Yabuta, M. Yoshikawa, S. Watanabe, Y. Tsuda
    Nature Astronomy 5(8) 766-774 2021年8月  
    Planetesimals—the initial stage of the planetary formation process—are considered to be initially very porous aggregates of dusts1,2, and subsequent thermal and compaction processes reduce their porosity3. The Hayabusa2 spacecraft found that boulders on the surface of asteroid (162173) Ryugu have an average porosity of 30–50% (refs. 4–6), higher than meteorites but lower than cometary nuclei7, which are considered to be remnants of the original planetesimals8. Here, using high-resolution thermal and optical imaging of Ryugu’s surface, we discovered, on the floor of fresh small craters (<20 m in diameter), boulders with reflectance (~0.015) lower than the Ryugu average6 and porosity >70%, which is as high as in cometary bodies. The artificial crater formed by Hayabusa2’s impact experiment9 is similar to these craters in size but does not have such high-porosity boulders. Thus, we argue that the observed high porosity is intrinsic and not created by subsequent impact comminution and/or cracking. We propose that these boulders are the least processed material on Ryugu and represent remnants of porous planetesimals that did not undergo a high degree of heating and compaction3. Our multi-instrumental analysis suggests that fragments of the highly porous boulders are mixed within the surface regolith globally, implying that they might be captured within collected samples by touch-down operations10,11.
  • M. Hirabayashi, Y. Mimasu, N. Sakatani, S. Watanabe, Y. Tsuda, T. Saiki, S. Kikuchi, T. Kouyama, M. Yoshikawa, S. Tanaka, S. Nakazawa, Y. Takei, F. Terui, H. Takeuchi, A. Fujii, T. Iwata, K. Tsumura, S. Matsuura, Y. Shimaki, S. Urakawa, Y. Ishibashi, S. Hasegawa, M. Ishiguro, D. Kuroda, S. Okumura, S. Sugita, T. Okada, S. Kameda, S. Kamata, A. Higuchi, H. Senshu, H. Noda, K. Matsumoto, R. Suetsugu, T. Hirai, K. Kitazato, D. Farnocchia, S.P. Naidu, D.J. Tholen, C.W. Hergenrother, R.J. Whiteley, N.A. Moskovitz, P.A. Abell
    Advances in Space Research 68(3) 1533-1555 2021年8月  
  • Toru Yada, Masanao Abe, Tatsuaki Okada, Aiko Nakato, Kasumi Yogata, Akiko Miyazaki, Kentaro Hatakeda, Kazuya Kumagai, Masahiro Nishimura, Yuya Hitomi, Hiromichi Soejima, Miwa Yoshitake, Ayako Iwamae, Shizuho Furuya, Masayuki Uesugi, Yuzuru Karouji, Tomohiro Usui, Tasuku Hayashi, Daiki Yamamoto, Ryota Fukai, Seiji Sugita, Yuichiro Cho, Koki Yumoto, Yuna Yabe, Jean-Pierre Bibring, Cedric Pilorget, Vincent Hamm, Rosario Brunetto, Lucie Riu, Lionel Lourit, Damien Loizeau, Guillaume Lequertier, Aurelie Moussi-Soffys, Shogo Tachibana, Hirotaka Sawada, Ryuji Okazaki, Yoshinori Takano, Kanako Sakamoto, Yayoi Miura, Hajime Yano, Trevor Ireland, Tetsuya Yamada, Masaki Fujimoto, Kohei Kitazato, Noriyuki Namiki, Masahiko Arakawa, Naru Hirata, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Hikaru Yabuta, Hiroshi Naraoka, Motoo Ito, Eizo Nakamura, Kentaro Uesugi, Katsura Kobayashi, Tatsuhiro Michikami, Hiroshi Kikuchi, Naoyuki Hirata, Yoshiaki Ishihara, Koji Matsumoto, Hirotomo Noda, Rina Noguchi, Yuri Shimaki, Kazunori Ogawa, Kei Shirai, Koji Wada, Hiroki Senshu, Yukio Yamamoto, Tomokatsu Morota, Rie Honda, Chikatoshi Honda, Yasuhiro Yokota, Moe Matsuoka, Naoya Sakatani, Eri Tatsumi, Akira Miura, Manabu Yamada, Atsushi Fujii, Chikako Hirose, Satoshi Hosoda, Hitoshi Ikeda, Takahiro Iwata, Shota Kikuchi, Yuya Mimasu, Osamu Mori, Naoko Ogawa, Go Ono, Takanobu Shimada, Stefania Soldini, Tadateru Takahashi, Yuto Takei, Hiroshi Takeuchi, Ryudo Tsukizaki, Kent Yoshikawa, Fuyuto Terui, Satoru Nakazawa, Satoshi Tanaka, Takanao Saiki, Makoto Yoshikawa, Sei-ichiro Watanabe, Yuichi Tsuda
    2021年6月21日  
    <title>Abstract</title> C-type asteroids are considered to be primitive small Solar-System bodies enriched in water and organics, providing clues for understanding the origin and evolution of the Solar System and the building blocks of life. C-type asteroid 162173 Ryugu has been characterized by remote sensing and on-asteroid measurements with Hayabusa2, but further studies are expected by direct analyses of returned samples. Here we describe the bulk sample mainly consisting of rugged and smooth particles of millimeter to submillimeter size, preserving physical and chemical properties as they were on the asteroid. The particle size distribution is found steeper than that of surface boulders11. Estimated grain densities of the samples have a peak around 1350 kg m-3, which is lower than that of meteorites suggests a high micro-porosity down to millimeter-scale, as estimated at centimeter-scale by thermal measurements. The extremely dark optical to near-infrared reflectance and the spectral profile with weak absorptions at 2.7 and 3.4 microns implying carbonaceous composition with indigenous aqueous alteration, respectively, match the global average of Ryugu, confirming the sample’s representativeness. Together with the absence of chondrule and Ca-Al-rich inclusion of larger than sub-mm, these features indicate Ryugu is most similar to CI chondrites but with darker, more porous and fragile characteristics.
  • Shota Kikuchi, Naoko Ogawa, Osamu Mori, Takanao Saiki, Yuto Takei, Fuyuto Terui, Go Ono, Yuya Mimasu, Kent Yoshikawa, Stefaan Van Wal, Hiroshi Takeuchi, Hitoshi Ikeda, Atsushi Fujii, Yuki Takao, Tetsuya Kusumoto, Naru Hirata, Naoyuki Hirata, Kei Shirai, Toru Kouyama, Shingo Kameda, Manabu Yamada, Satoru Nakazawa, Makoto Yoshikawa, Satoshi Tanaka, Seiji Sugita, Sei-ichiro Watanabe, Yuichi Tsuda
    ICARUS 358 2021年4月  
    Hayabusa2 deployed two artificial landmarks called "target markers (TMs)" on the asteroid Ryugu for autonomous landing control. To achieve precise deployment on target landing sites, the TMs were designed to dissipate kinetic energy and released near the asteroid surface (with an altitude of less than 40 m). This study evaluates the performance of the ballistic deployment in the actual microgravity environment by reconstructing the trajectories of the TMs from optical, altimetric, and radiometric data. In addition, based on the reconstructed trajectories, low-velocity impacts of the TMs on the surface of Ryugu are characterized with dynamical parameters, such as dissipated energy and a coefficient of restitution. The physical implications of the impact analysis are discussed in comparison with on-ground experimental data. Furthermore, the gravitational environment is investigated using the reconstructed trajectory data and a shape model of Ryugu, providing information on the local gravity anomaly. Consequently, this paper demonstrates the usefulness of deployable artificial landmarks for small-body landings and further offers insight on surface conditions and internal structures near the Hayabusa2 landing sites where samples of Ryugu were collected.
  • K. Kitazato, R. E. Milliken, T. Iwata, M. Abe, M. Ohtake, S. Matsuura, Y. Takagi, T. Nakamura, T. Hiroi, M. Matsuoka, L. Riu, Y. Nakauchi, K. Tsumura, T. Arai, H. Senshu, N. Hirata, M. A. Barucci, R. Brunetto, C. Pilorget, F. Poulet, J.-P. Bibring, D. L. Domingue, F. Vilas, D. Takir, E. Palomba, A. Galiano, D. Perna, T. Osawa, M. Komatsu, A. Nakato, T. Arai, N. Takato, T. Matsunaga, M. Arakawa, T. Saiki, K. Wada, T. Kadono, H. Imamura, H. Yano, K. Shirai, M. Hayakawa, C. Okamoto, H. Sawada, K. Ogawa, Y. Iijima, S. Sugita, R. Honda, T. Morota, S. Kameda, E. Tatsumi, Y. Cho, K. Yoshioka, Y. Yokota, N. Sakatani, M. Yamada, T. Kouyama, H. Suzuki, C. Honda, N. Namiki, T. Mizuno, K. Matsumoto, H. Noda, Y. Ishihara, R. Yamada, K. Yamamoto, F. Yoshida, S. Abe, A. Higuchi, Y. Yamamoto, T. Okada, Y. Shimaki, R. Noguchi, A. Miura, N. Hirata, S. Tachibana, H. Yabuta, M. Ishiguro, H. Ikeda, H. Takeuchi, T. Shimada, O. Mori, S. Hosoda, R. Tsukizaki, S. Soldini, M. Ozaki, F. Terui, N. Ogawa, Y. Mimasu, G. Ono, K. Yoshikawa, C. Hirose, A. Fujii, T. Takahashi, S. Kikuchi, Y. Takei, T. Yamaguchi, S. Nakazawa, S. Tanaka, M. Yoshikawa, S. Watanabe, Y. Tsuda
    Nature Astronomy 5(3) 246-250 2021年3月  

MISC

 499
  • 岡田達明, 岡田達明, 田中智, 坂谷尚哉, 嶌生有理, 石崎拓也, 吉川真, 竹内央, 山本幸生, 荒井武彦, 千秋博紀, 出村裕英, 関口朋彦, 神山徹, 金丸仁明
    日本地球惑星科学連合大会予稿集(Web) 2023 2023年  
  • 田中智, 三桝裕也, 神山徹, 坂谷尚哉, 北里宏平, 鎌田俊一, 平林正稔, 中澤暁, 吉川真, 津田雄一
    宇宙科学技術連合講演会講演集(CD-ROM) 67th 2023年  
  • 吉川真, 田中智, 平林正稔, 三桝裕也, 佐伯孝尚, 中澤暁, 津田雄一
    宇宙科学技術連合講演会講演集(CD-ROM) 67th 2023年  
  • 奥村真一郎, 柳沢俊史, 大澤亮, 酒向重行, 紅山仁, 高橋英則, 吉田二美, 吉川真, 浦川聖太郎, 阿部新助
    宇宙科学技術連合講演会講演集(CD-ROM) 67th 2023年  
  • Jens Barosch, Larry R. Nittler, Jianhua Wang, Conel M. O'D. Alexander, Bradley T. De Gregorio, Cécile Engrand, Yoko Kebukawa, Kazuhide Nagashima, Rhonda M. Stroud, Hikaru Yabuta, Yoshinari Abe, Jérôme Aléon, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Laure Bejach, Martin Bizzarro, Lydie Bonal, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, George D. Cody, Emmanuel Dartois, Nicolas Dauphas, Andrew M. Davis, Alexandre Dazzi, Ariane Deniset-Besseau, Tommaso Di Rocco, Jean Duprat, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Minako Hashiguchi, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Motoo Ito, Shoichi Itoh, Kanami Kamide, Noriyuki Kawasaki, A. L. David Kilcoyne, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Mutsumi Komatsu, Alexander N. Krot, Ming-Chang Liu, Zita Martins, Yuki Masuda, Jérémie Mathurin, Kevin D. McKeegan, Gilles Montagnac, Mayu Morita, Smail Mostefaoui, Kazuko Motomura, Frédéric Moynier, Izumi Nakai, Ann N. Nguyen, Takuji Ohigashi, Taiga Okumura, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Eric Quirico, Laurent Remusat, Sara S. Russell, Naoya Sakamoto, Scott A. Sandford, Maria Schönbächler, Miho Shigenaka, Hiroki Suga, Lauren Tafla, Yoshio Takahashi, Yasuo Takeichi, Yusuke Tamenori, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Maximilien Verdier-Paoletti, Sohei Wada, Meenakshi Wadhwa, Daisuke Wakabayashi, Richard J. Walker, Katsuyuki Yamashita, Shohei Yamashita, Qing-Zhu Yin, Tetsuya Yokoyama, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Satoru Nakazawa, Masahiro Nishimura, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Toru Yada, Kasumi Yogata, Makoto Yoshikawa, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Shogo Tachibana, Hisayoshi Yurimoto
    ASTROPHYSICAL JOURNAL LETTERS 935(1) 2022年8月16日  
    We have conducted a NanoSIMS-based search for presolar material in samples recently returned from C-type asteroid Ryugu as part of JAXA's Hayabusa2 mission. We report the detection of all major presolar grain types with O- and C-anomalous isotopic compositions typically identified in carbonaceous chondrite meteorites: 1 silicate, 1 oxide, 1 O-anomalous supernova grain of ambiguous phase, 38 SiC, and 16 carbonaceous grains. At least two of the carbonaceous grains are presolar graphites, whereas several grains with moderate C isotopic anomalies are probably organics. The presolar silicate was located in a clast with a less altered lithology than the typical extensively aqueously altered Ryugu matrix. The matrix-normalized presolar grain abundances in Ryugu are 4.8$^{+4.7}_{-2.6}$ ppm for O-anomalous grains, 25$^{+6}_{-5}$ ppm for SiC grains and 11$^{+5}_{-3}$ ppm for carbonaceous grains. Ryugu is isotopically and petrologically similar to carbonaceous Ivuna-type (CI) chondrites. To compare the in situ presolar grain abundances of Ryugu with CI chondrites, we also mapped Ivuna and Orgueil samples and found a total of SiC grains and 6 carbonaceous grains. No O-anomalous grains were detected. The matrix-normalized presolar grain abundances in the CI chondrites are similar to those in Ryugu: 23 $^{+7}_{-6}$ ppm SiC and 9.0$^{+5.3}_{-4.6}$ ppm carbonaceous grains. Thus, our results provide further evidence in support of the Ryugu-CI connection. They also reveal intriguing hints of small-scale heterogeneities in the Ryugu samples, such as locally distinct degrees of alteration that allowed the preservation of delicate presolar material.

書籍等出版物

 19

講演・口頭発表等

 32

担当経験のある科目(授業)

 8

共同研究・競争的資金等の研究課題

 15

学術貢献活動

 3

社会貢献活動

 2

メディア報道

 2