研究者業績

マツダ フレドリック タカユキ

マツダ フレドリック タカユキ  (Frederick Takayuki MATSUDA)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙物理学研究系 特任助教
学位
Ph.D.(2017年6月 University of California, San Diego)

研究者番号
40867032
ORCID ID
 https://orcid.org/0000-0003-0041-6447
J-GLOBAL ID
201901016586407138
researchmap会員ID
B000373123

受賞

 2

論文

 68
  • Charles A. Hill, Shawn Beckman, Yuji Chinone, Neil Goeckner-Wald, Masashi Hazumi, Brian Keating, Akito Kusaka, Adrian T. Lee, Frederick Matsuda, Richard Plambeck, Aritoki Suzuki, Satoru Takakura
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII 2016年7月19日  
  • POLARBEAR Collaboration, Peter A. R. Ade, Kam Arnold, Matt Atlas, Carlo Baccigalupi, Darcy Barron, David Boettger, Julian Borrill, Scott Chapman, Yuji Chinone, Ari Cukierman, Matt Dobbs, Anne Ducout, Rolando Dunner, Tucker Elleflot, Josquin Errard, Giulio Fabbian, Stephen Feeney, Chang Feng, Adam Gilbert, Neil Goeckner-Wald, John Groh, Grantland Hall, Nils W. Halverson, Masaya Hasegawa, Kaori Hattori, Masashi Hazumi, Charles Hill, William L. Holzapfel, Yasuto Hori, Logan Howe, Yuki Inoue, Gregory C. Jaehnig, Andrew H. Jaffe, Oliver Jeong, Nobuhiko Katayama, Jonathan P. Kaufman, Brian Keating, Zigmund Kermish, Reijo Keskitalo, Theodore Kisner, Akito Kusaka, Maude Le Jeune, Adrian T. Lee, Erik M. Leitch, David Leon, Yun Li, Eric Linder, Lindsay Lowry, Frederick Matsuda, Tomotake Matsumura, Nathan Miller, Josh Montgomery, Michael J. Myers, Martin Navaroli, Haruki Nishino, Takahiro Okamura, Hans Paar, Julien Peloton, Levon Pogosian, Davide Poletti, Giuseppe Puglisi, Christopher Raum, Gabriel Rebeiz, Christian L. Reichardt, Paul L. Richards, Colin Ross, Kaja M. Rotermund, David E. Schenck, Blake D. Sherwin, Meir Shimon, Ian Shirley, Praween Siritanasak, Graeme Smecher, Nathan Stebor, Bryan Steinbach, Aritoki Suzuki, Jun-ichi Suzuki, Osamu Tajima, Satoru Takakura, Alexei Tikhomirov, Takayuki Tomaru, Nathan Whitehorn, Brandon Wilson, Amit Yadav, Alex Zahn, Oliver Zahn
    Phys. Rev. D 92, 123509 (2015) 2015年9月8日  
    We constrain anisotropic cosmic birefringence using four-point correlations of even-parity $E$-mode and odd-parity $B$-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magnetic field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of $B$-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the $B$-mode power spectrum. Using the POLARBEAR measurements of the $B$-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. We perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.
  • The Polarbear Ccollaboration, PAR Ade, Y Akiba, A E Anthony, K Arnold, M Atlas, D Barron, D Boettger, J Borrill, S Chapman, Y Chinone, M Dobbs, T Elleflot, J Errard, G Fabbian, C Feng, D Flanigan, A Gilbert, W Grainger, N W Halverson, M Hasegawa, K Hattori, M Hazumi, W L Holzapfel, Y Hori, J Howard, P Hyland, Y Inoue, G C Jaehnig, A H Jaffe, B Keating, Z Kermish, R Keskitalo, T Kisner, M Le Jeune, A T Lee, E M Leitch, E Linder, M Lungu, F Matsuda, T Matsumura, X Meng, N J Miller, H Morii, S Moyerman, M J, Myers M Navaroli, H Nishino, A Orlando, H Paar, J Peloton, D Poletti, E Quealy, G Rebeiz, C L Reichardt, P L Richards, C Ross, I Schanning, D E Schenck, B D Sherwi, A Shimizu, C Shimmin, M Shimon, P Siritanasak, G Smecher, H Spieler, N Stebor, B Steinbach, R Stompor, A Suzuki, S Takakura, T Tomaru, B Wilson, A Yadav, O Zahn
    Publication of The Korean Astronomical Society 30(2) 625-628 2015年9月  査読有り
  • J. Errard, P. A. R. Ade, Y. Akiba, K. Arnold, M. Atlas, C. Baccigalupi, D. Barron, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, J. Delabrouille, M. Dobbs, A. Ducout, T. Elleflot, G. Fabbian, C. Feng, S. Feeney, A. Gilbert, N. Goeckner-Wald, N. W. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. L. Holzapfel, Y. Hori, Y. Inoue, G. C. Jaehnig, A. H. Jaffe, O. Jeong, N. Katayama, J. Kaufman, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M. Le Jeune, A. T. Lee, E. M. Leitch, D. Leon, E. Linder, F. Matsuda, T. Matsumura, N. J. Miller, M. J. Myers, M. Navaroli, H. Nishino, T. Okamura, H. Paar, J. Peloton, D. Poletti, G. Puglisi, G. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, K. M. Rotermund, D. E. Schenck, B. D. Sherwin, P. Siritanasak, G. Smecher, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, O. Tajima, S. Takakura, A. Tikhomirov, T. Tomaru, N. Whitehorn, B. Wilson, A. Yadav, O. Zahn
    ASTROPHYSICAL JOURNAL 809(1) 2015年8月  査読有り
    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.
  • The Polarbear Collaboration: P. A. R. Ade, Y. Akiba, A. E. Anthony, K. Arnold, M. Atlas, D. Barron, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, C. Feng, D. Flanigan, A. Gilbert, W. Grainger, N. W. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. L. Holzapfel, Y. Hori, J. Howard, P. Hyland, Y. Inoue, G. C. Jaehnig, A. H. Jaffe, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M. Le Jeune, A. T. Lee, E. M. Leitch, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, X. Meng, N. J. Miller, H. Morii, S. Moyerman, M. J. Myers, M. Navaroli, H. Nishino, A. Orlando, H. Paar, J. Peloton, D. Poletti, E. Quealy, G. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, I. Schanning, D. E. Schenck, B. D. Sherwin, A. Shimizu, C. Shimmin, M. Shimon, P. Siritanasak, G. Smecher, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, S. Takakura, T. Tomaru, B. Wilson, A. Yadav, O. Zahn
    The Astrophysical Journal 794(2) 171-171 2014年10月7日  査読有り
  • A. Suzuki, P. Ade, Y. Akiba, C. Aleman, K. Arnold, M. Atlas, D. Barron, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, G. Feng, A. Gilbert, W. Grainger, N. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. Holzapfel, Y. Hori, Y. Inoue, G. Jaehnig, N. Katayama, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Lee, F. Matsuda, T. Matsumura, H. Morii, S. Moyerman, M. Myers, M. Navaroli, H. Nishino, T. Okamura, C. Reichart, P. Richards, C. Ross, K. Rotermund, M. Sholl, P. Siritanasak, G. Smecher, N. Stebor, R. Stompor, J. Suzuki, S. Takada, S. Takakura, T. Tomaru, B. Wilson, H. Yamaguchi, O. Zahn
    JOURNAL OF LOW TEMPERATURE PHYSICS 176(5-6) 719-725 2014年9月  査読有り
    We present an overview of the design and development of the POLARBEAR-2 experiment. The POLARBEAR-2 experiment is a cosmic microwave background polarimetry experiment, which aims to characterize the small angular scale B-mode signal due to gravitational lensing and search for the large angular scale B-mode signal from inflationary gravitational waves. The experiment will have a 365 mm diameter multi-chroic focal plane filled with 7,588 polarization sensitive antenna-coupled Transition Edge Sensor bolometers and will observe at 95 and 150 GHz. The focal plane is cooled to 250 mK. The bolometers will be read-out by SQUIDs with frequency domain multiplexing. The experiment will utilize high purity alumina lenses and thermal filters to achieve the required high optical throughput. A continuously rotating, cooled half-wave plate will be used to give stringent control over systematic errors. The experiment is designed to achieve a noise equivalent temperature of 5.7 K, and this allows us to constrain the signal from the inflationary primordial gravitational corresponding to a tensor-to-scalar ratio of (). POLARBEAR-2 will also be able to put a constraint on the sum of neutrino masses to 90 meV () with POLARBEAR-2 data alone and 65 meV () when combined with the Planck satellite. We plan to start observations in 2014 in the Atacama Desert in Chile.
  • D. Barron, P. Ade, A. Anthony, K. Arnold, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M. Dobbs, J. Edwards, J. Errard, G. Fabbian, D. Flanigan, G. Fuller, A. Ghribi, W. Grainger, N. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. Holzapfel, J. Howard, P. Hyland, G. Jaehnig, A. Jaffe, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. T. Lee, M. Le Jeune, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, X. Meng, N. J. Miller, H. Morii, S. Moyerman, M. Myers, H. Nishino, H. Paar, J. Peloton, E. Quealy, G. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, A. Shimizu, C. Shimmin, M. Shimon, M. Sholl, P. Siritanasak, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, T. Tomaru, C. Tucker, A. Yadav, O. Zahn
    Journal of Low Temperature Physics 176(5-6) 726-732 2014年9月  査読有り
  • Y. Inoue, N. Stebor, P. A. R. Ade, Y. Akiba, K. Arnold, A. E. Anthony, M. Atlas, D. Barron, A. Bender, D. Boettger, J. Borrilll, S. Chapman, Y. Chinone, A. Cukierman, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, C. Feng, A. Gilbert, N. W. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. L. Holzapfel, Y. Hori, G. C. Jaehnig, A. H. Jaffe, N. Katayama, B. Keating, Z. Kermish, Reijo Keskitalo, T. Kisner, M. Le Jeune, A. T. Lee, E. M. Leitch, E. Linder, F. Matsuda, T. Matsumura, X. Meng, H. Morii, M. J. Myers, M. Navaroli, H. Nishino, T. Okamura, H. Paar, J. Peloton, D. Poletti, G. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, D. E. Schenck, B. D. Sherwin, P. Siritanasak, G. Smecher, M. Sholl, B. Steinbach, R. Stompor, A. Suzuki, J. Suzuki, S. Takada, S. Takakura, T. Tomaru, B. Wilson, A. Yadav, H. Yamaguchi, O. Zahn
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII 2014年8月19日  
  • K. Arnold, N. Stebor, P. A. R. Ade, Y. Akiba, A. E. Anthony, M. Atlas, D. Barron, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, C. Feng, A. Gilbert, N. Goeckner-Wald, N. W. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. L. Holzapfel, Y. Hori, Y. Inoue, G. C. Jaehnig, A. H. Jaffe, N. Katayama, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M. Le Jeune, A. T. Lee, E. M. Leitch, E. Linder, F. Matsuda, T. Matsumura, X. Meng, N. J. Miller, H. Morii, M. J. Myers, M. Navaroli, H. Nishino, T. Okamura, H. Paar, J. Peloton, D. Poletti, C. Raum, G. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, K. M. Rotermund, D. E. Schenck, B. D. Sherwin, I. Shirley, M. Sholl, P. Siritanasak, G. Smecher, B. Steinbach, R. Stompor, A. Suzuki, J. Suzuki, S. Takada, S. Takakura, T. Tomaru, B. Wilson, A. Yadav, O. Zahn
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII 2014年8月19日  
  • P. A. R. Ade, Y. Akiba, A. E. Anthony, K. Arnold, M. Atlas, D. Barron, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, C. Feng, D. Flanigan, A. Gilbert, W. Grainger, N. W. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. L. Holzapfel, Y. Hori, J. Howard, P. Hyland, Y. Inoue, G. C. Jaehnig, A. Jaffe, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M. Le Jeune, A. T. Lee, E. Linder, E. M. Leitch, M. Lungu, F. Matsuda, T. Matsumura, X. Meng, N. J. Miller, H. Morii, S. Moyerman, M. J. Myers, M. Navaroli, H. Nishino, H. Paar, J. Peloton, E. Quealy, G. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, I. Schanning, D. E. Schenck, B. Sherwin, A. Shimizu, C. Shimmin, M. Shimon, P. Siritanasak, G. Smecher, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, S. Takakura, T. Tomaru, B. Wilson, A. Yadav, O. Zahn
    Physical Review Letters 113(2) 2014年7月9日  査読有り
  • P. A. R. Ade, Y. Akiba, A. E. Anthony, K. Arnold, M. Atlas, D. Barron, D. Boettger, J. Borrill, C. Borys, S. Chapman, Y. Chinone, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, C. Feng, D. Flanigan, A. Gilbert, W. Grainger, N. W. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. L. Holzapfel, Y. Hori, J. Howard, P. Hyland, Y. Inoue, G. C. Jaehnig, A. Jaffe, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M. Le Jeune, A. T. Lee, E. M. Leitch, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, X. Meng, N. J. Miller, H. Morii, S. Moyerman, M. J. Myers, M. Navaroli, H. Nishino, H. Paar, J. Peloton, D. Poletti, E. Quealy, G. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, K. Rotermund, I. Schanning, D. E. Schenck, B. D. Sherwin, A. Shimizu, C. Shimmin, M. Shimon, P. Siritanasak, G. Smecher, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, S. Takakura, A. Tikhomirov, T. Tomaru, B. Wilson, A. Yadav, O. Zahn
    Physical Review Letters 112(13) 2014年4月2日  査読有り
  • Tomotake Matsumura, Peter Ade, Yoshiki Akiba, Christopher Aleman, Kam Arnold, Matt Atlas, Darcy Barron, Julian Borrill, Scott Chapman, Yuji Chinone, Ari Cukierman, Matt Dobbs, Tucker Elleflot, Josquin Errard, Giulio Fabbian, Guangyuan Feng, Adam Gilbert, William Grainger, Nils Halverson, Masaya Hasegawa, Kaori Hattori, Masashi Hazumi, William Holzapfel, Yasuto Hori, Yuki Inoue, Greg Jaehnig, Nobuhiko Katayama, Brian Keating, Zigmund Kermish, Reijo Keskitalo, Ted Kisner, Adrian Lee, Frederick Matsuda, Hideki Morii, Stephanie Moyerman, Michael Myers, Marty Navaroli, Haruki Nishino, Takahiro Okamura, Christian Reichart, Paul Richards, Colin Ross, Kaja Rotermund, Michael Sholl, Praween Siritanasak, Graeme Smecher, Nathan Stebor, Radek Stompor, Jun-ichi Suzuki, Aritoki Suzuki, Suguru Takada, Satoru Takakura, Takayuki Tomaru, Brandon Wilson, Hiroshi Yamaguchi, Oliver Zahn
    Proceedings of the 12th Asia Pacific Physics Conference (APPC12) 2014年3月26日  
  • D. Barronk, P. A. R. Ade, Y. Akiba, C. Aleman, K. Arnold, M. Atlas, A. Bender, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, G. Feng, A. Gilbert, N. W. Halverson, M. Hasegawa, K. Hattori, M. Hzumi, W. L. Holzapfel, Y. Hori, Y. Inoue, G. C. Jaehnig, N. Katayama, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M. Le Jeune, A. T. Lee, F. Matsuda, T. Matsumura, H. Morii, M. J. Myers, M. Navaroli, H. Nishino, T. Okamura, J. Peloton, G. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, M. Sholl, P. Siritanasak, G. Smecher, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, J. Suzuki, S. Takada, S. Takakura, T. Tomaru, B. Wilson, H. Yamaguchi, O. Zahn
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII 9153 2014年  査読有り
    POLARBEAR-2 is a next-generation receiver for precision measurements of the polarization of the cosmic microwave background (Cosmic Microwave Background (CMB)). Scheduled to deploy in early 2015, it will observe alongside the existing POLARBEAR-1 receiver, on a new telescope in the Simons Arrayon Cerro Toco in the Atacama desert of Chile. For increased sensitivity, it will feature a larger area focal plane, with a total of 7,588 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers, with a design sensitivity of 4.1 The focal plane will be cooled to 250 milliKelvin, and the bolometers will be read-out with 40x frequency domain multiplexing, with 36 optical bolometers on a single SQUID amplifier, along with 2 dark bolometers and 2 calibration resistors. To increase the multiplexing factor from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth for SQUID readout and well-defined frequency channel spacing. Extending to these higher frequencies requires new components and design for the LC filters which define channel spacing. The LC filters are cold resonant circuits with an inductor and capacitor in series with each bolometer, and stray inductance in the wiring and equivalent series resistance from the capacitors can affect bolometer operation. We present results from characterizing these new readout components. Integration of the readout system is being done first on a small scale, to ensure that the readout system does not affect bolometer sensitivity or stability, and to validate the overall system before expansion into the full receiver. We present the status of readout integration, and the initial results and status of components for the full array.
  • Tomotake Matsumura, Peter Ade, Kam Arnold, Darcy Barron, Julian Borrill, Scott Chapman, Yuji Chinone, Matt Dobbs, Josquin Errard, Giullo Fabbian, Adnan Ghribi, William Grainger, Nils Halverson, Masaya Hasegawa, Kaori Hattori, Masashi Hazumi, William L. Holzapfel, Yuki Inoue, Sou Ishii, Yuta Kaneko, Brian Keating, Zigmund Kermish, Nobuhiro Kimura, Ted Kisner, William Kranz, Adrian T. Lee, Frederick Matsuda, Hideki Morii, Michael J. Myers, Haruki Nishino, Takahiro Okamura, Erin Quealy, Christian Reichardt, Paul L. Richards, Darin Rosen, Colin Ross, Akie Shimizu, Michael Sholl, Praween Siritanasak, Peter Smith, Nathan Stebor, Radek Stompor, Aritoki Suzuki, Jun-ichi Suzuki, Suguru Takada, Ken-ichi Tanaka, Takayuki Tomaru, Oliver Zahn
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI 2012年10月5日  
  • K. Arnold, P. A. R. Ade, A. E. Anthony, D. Barron, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M. A. Dobbs, J. Errard, G. Fabbian, D. Flanigan, G. Fuller, A. Ghribi, W. Grainger, N. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. L. Holzapfel, J. Howard, P. Hyland, A. Jaffe, B. Keating, Z. Kermish, T. Kisner, M. Le Jeune, A. T. Lee, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, N. J. Miller, X. Meng, H. Morii, S. Moyerman, M. J. Myers, H. Nishino, H. Paar, E. Quealy, C. Reichardt, P. L. Richards, C. Ross, A. Shimizu, C. Shimmin, M. Shimon, M. Sholl, P. Siritanasak, H. Speiler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, T. Tomaru, C. Tucker, O. Zahn
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI 2012年9月24日  
  • Zigmund D. Kermish, Peter Ade, Aubra Anthony, Kam Arnold, Darcy Barron, David Boettger, Julian Borrill, Scott Chapman, Yuji Chinone, Matt A. Dobbs, Josquin Errard, Giulio Fabbian, Daniel Flanigan, George Fuller, Adnan Ghribi, Will Grainger, Nils Halverson, Masaya Hasegawa, Kaori Hattori, Masashi Hazumi, William L. Holzapfel, Jacob Howard, Peter Hyland, Andrew Jaffe, Brian Keating, Theodore Kisner, Adrian T. Lee, Maude Le Jeune, Eric Linder, Marius Lungu, Frederick Matsuda, Tomotake Matsumura, Xiaofan Meng, Nathan J. Miller, Hideki Morii, Stephanie Moyerman, Mike J. Myers, Haruki Nishino, Hans Paar, Erin Quealy, Christian L. Reichardt, Paul L. Richards, Colin Ross, Akie Shimizu, Meir Shimon, Chase Shimmin, Mike Sholl, Praween Siritanasak, Helmuth Spieler, Nathan Stebor, Bryan Steinbach, Radek Stompor, Aritoki Suzuki, Takayuki Tomaru, Carole Tucker, Oliver Zahn
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI 2012年9月24日  
  • M. Hasegawa, P. A.R. Ade, A. E. Anthony, K. Arnold, D. Barron, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M. A. Dobbs, J. Errard, G. Fabbian, D. Flanigan, G. Fuller, A. Ghribi, W. Grainger, N. Halverson, K. Hattori, M. Hazumi, W. L. Holzapfel, J. Howard, P. Hyland, A. Jaffe, B. Keating, Z. Kermish, T. Kisner, M. Le Jeune, A. T. Lee, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, N. J. Miller, X. Meng, H. Morii, S. Moyerman, M. J. Myers, H. Nishino, H. Paar, E. Quealy, C. Reichardt, P. L. Richards, C. Ross, A. Shimizu, C. Chimmin, M. Shimon, M. Sholl, P. Siritanasak, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, T. Tomaru, C. Tucker, O. Zahn
    Proceedings of Science 2012- 2012年  
    Cosmic inflation predicts that primordial gravitational waves were created during the inflationary era. Measurements of polarization of the Cosmic Microwave Background (CMB) radiation are known as the best probe to detect the primordial gravitational waves. POLARBEAR is a telescope designed to detect the CMB B-mode with very sensitive polarimeters based on superconductive transition edge sensor (TES) detector technology. Its large primary mirror with a diameter of 3.5m also allows us to constrain or measure the sum of neutrino masses beyond the limit obtained so far. POLARBEAR is located on the Chajnantor plateau in the Atacama desert in northern Chile at an altitude of 5,200m. We received the first light in January 2012 and are taking CMB data at 150 GHz. In this paper we will describe the current status and prospect of POLARBEAR.
  • B. Keating, S. Moyerman, D. Boettger, J. Edwards, G. Fuller, F. Matsuda, N. Miller, H. Paar, G. Rebeiz, I. Schanning, M. Shimon, N. Stebor, K. Arnold, D. Flanigan, W. Holzapfel, J. Howard, Z. Kermish, A. Lee, M. Lungu, M. Myers, H. Nishino, R. O'Brient, E. Quealy, C. Reichardt, P. Richards, C. Shimmin, B. Steinbach, A. Suzuki, O. Zahn, J. Borrill, C. Cantalupo, E. Kisner, E. Linder, M. Sholl, H. Spieler, A. Anthony, N. Halverson, J. Errard, G. Fabbian, M. Le Jeune, R. Stompor, A. Jaffe, D. O'Dea, Y. Chinone, M. Hasegawa, M. Hazumi, T. Matsumura, H. Morii, A. Shimizu, T. Tomaru, P. Hyland, M. Dobbs, P. Ade, W. Grainger, C. Tucker
    Proceedings of the 2011 Meeting of the Division of Particles and Fields of the American Physical Society, DPF 2011 2011年  
    Observations of the temperature anisotropy of the Cosmic Microwave Background (CMB) lend support to an inflationary origin of the universe, yet no direct evidence verifying inflation exists. Many current experiments are focussing on the CMB's polarization anisotropy, specifically its curl component (called “B-mode” polarization), which remains undetected. The inflationary paradigm predicts the existence of a primordial gravitational wave background that imprints a unique B-mode signature on the CMB's polarization at large angular scales. The CMB B-mode signal also encodes gravitational lensing information at smaller angular scales, bearing the imprint of cosmological large scale structures (LSS) which in turn may elucidate the properties of cosmological neutrinos. The quest for detection of these signals each of which is orders of magnitude smaller than the CMB temperature anisotropy signal, has motivated the development of background-limited detectors with precise control of systematic effects. The POLARBEAR experiment is designed to perform a deep search for the signature of gravitational waves from inflation and to characterize lensing of the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8 arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver is an array featuring 1274 antenna-coupled superconducting transition edge sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a tensor-to-scalar ratio of 0.025 after two years of observation - more than an order of magnitude improvement over the current best results, which would test physics at energies near the GUT scale. POLARBEAR had an engineering run in the Inyo Mountains of Eastern California in 2010 and will begin observations in the Atacama Desert in Chile in 2011.

MISC

 39

講演・口頭発表等

 46

共同研究・競争的資金等の研究課題

 2