Dept. of Solar System Sciences

長谷川 洋

ハセガワ ヒロシ  (Hiroshi Hasegawa)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 助教

J-GLOBAL ID
200901040603353226
Researcher ID
A-1192-2007
researchmap会員ID
6000000662

外部リンク

論文

 167
  • Kyunghwan Dokgo, James M. Webster, Kyoung‐Joo Hwang, Eunjin Choi, Daniel B. Graham, Hiroshi Hasegawa, James L. Burch, Peter H. Yoon
    Geophysical Research Letters 52(16) 2025年8月18日  査読有り
    Abstract We investigate Magnetospheric Multiscale (MMS) observation of the rising‐tone whistler waves during the magnetopause asymmetric magnetic reconnection on 24 December 2016. The rising‐tone whistler wave propagates toward the electron diffusion region of magnetic reconnection along the magnetic field on the magnetosheath side of the separatrix. The fundamental frequency of the whistler wave is slightly above 0.5 (electron cyclotron frequency) and rises to 1.0 . This study shows that the separatrix can provide favorable conditions for (a) the generation of whistler waves, (b) the frequency chirping of whistler waves, and (c) the local confinement of whistler waves within the narrow separatrix. These rising‐tone whistler waves, generated under such conditions, may contribute to the rapid energization of electrons during the magnetic reconnection.
  • C. Norgren, L.-J. Chen, D. B. Graham, N. Bessho, J. Egedal, L. Richard, Yu. V. Khotyaintsev, J. Shuster, S. Toledo-Redondo, B. Lavraud, H. Hasegawa, J. P. Eastwood, M. Hesse, Y.-H. Liu, J. C. Holmes, M. Argall
    Space Science Reviews 221(5) 2025年8月11日  査読有り
    Abstract Magnetic reconnection is a fundamental plasma process responsible for the sometimes explosive release of magnetic energy in space and laboratory plasmas. Inside the diffusion regions of magnetic reconnection, the plasma becomes demagnetized and decouples from the magnetic field, enabling the change in magnetic topology necessary to power the energy release over larger scales. Since it was launched in 2015, the Magnetospheric MultiScale (MMS) mission has significantly advanced the understanding of the particle dynamics key to magnetic reconnection by providing high-resolution, in-situ measurements able to resolve ion and electron kinetic scales, i.e. a fraction of a gyroradius, that have confirmed theoretical predictions, revealed new phenomena, and refined existing models. These breakthroughs are critical for understanding not only space plasmas but also laboratory and astrophysical plasmas where magnetic reconnection occurs. In this work, we review the ion and electron dynamics occurring within the diffusion regions, in the inflow, along the separatrices, and downstream of the diffusion regions, in different reconnection configurations: symmetric, asymmetric, antiparallel, and guide field reconnection.
  • R. Nakamura, J. L. Burch, J. Birn, L.-J. Chen, D. B. Graham, F. Guo, K.-J. Hwang, H. Ji, Y. V. Khotyaintsev, Y.-H. Liu, M. Oka, D. Payne, M. I. Sitnov, M. Swisdak, S. Zenitani, J. F. Drake, S. A. Fuselier, K. J. Genestreti, D. J. Gershman, H. Hasegawa, M. Hoshino, C. Norgren, M. A. Shay, J. R. Shuster, J. E. Stawarz
    Space Science Reviews 221(1) 2025年2月11日  査読有り
    Abstract This short article highlights unsolved problems of magnetic reconnection in collisionless plasma. Advanced in-situ plasma measurements and simulations have enabled scientists to gain a novel understanding of magnetic reconnection. Nevertheless, outstanding questions remain concerning the complex dynamics and structures in the diffusion region, cross-scale and regional couplings, the onset of magnetic reconnection, and the details of particle energization. We discuss future directions for magnetic reconnection research, including new observations, new simulations, and interdisciplinary approaches.
  • Harsha Gurram, Jason R. Shuster, Li‐Jen Chen, Hiroshi Hasegawa, Richard E. Denton, Brandon L. Burkholder, Jason Beedle, Daniel J. Gershman, James Burch
    Geophysical Research Letters 52(3) 2025年2月10日  査読有り
    Abstract The magnetic cloud (MC) of the Coronal Mass Ejection on 24 April 2023, contains sub‐Alfvénic solar wind, transforming Earth's magnetosphere from conventional bow‐shock magnetotail configuration to Alfvén wings. Utilizing measurements from the Magnetosphere Multiscale (MMS) mission, we present for the first time electron distribution signatures as the spacecraft traverses through various magnetic topologies during this transformation. Specifically, we characterize electrons inside the sub‐Alfvénic MC, on the dawn‐dusk wing field lines and on the closed field lines. The signatures include strahl electrons in MC regions and energetic keV electrons streaming along the dawn and dusk wing field lines. We demonstrate the distribution signatures of dual wing reconnection, defined as reconnection between dawn‐dusk Alfvén wing field lines and the interplanetary magnetic field (IMF). These signatures include four electron populations comprised of partially depleted MC electrons and bi‐directional energetic electrons with variations in energy and pitch‐angle. The distributions reveal evidence of bursty magnetic reconnection under northward IMF.
  • H. Hasegawa, R. E. Denton, L.‐J. Chen, Q. Hu, M. N. Nishino, K.‐J. Hwang
    Journal of Geophysical Research: Space Physics 129(12) 2024年12月4日  査読有り筆頭著者責任著者
    Abstract We present observations on 24 April 2023 by the Magnetospheric Multiscale spacecraft at the dayside, mid‐latitude magnetopause, when an interplanetary magnetic cloud (MC) with sub‐Alfvénic flows and northward and dawnward interplanetary magnetic field components impacted Earth's magnetosphere. The aim is to reveal the processes of solar wind‐magnetosphere interaction under sub‐Alfvénic solar wind with northward magnetic field. Our analysis of electron and ion data suggests that magnetopause reconnection occurred near both polar cusps, forming boundary layers on closed magnetic field lines on both the solar wind (i.e., MC) and magnetospheric sides of the magnetopause. Grad‐Shafranov, electron‐magnetohydrodynamics, and polynomial reconstructions of magnetopause current layers show that local (equator‐of‐the‐cusp) reconnection occurred in a sub‐ion‐scale magnetopause current sheet with a low magnetic shear angle (30°). Interestingly, the local reconnection was observed between the two (MC‐side and magnetosphere‐side) layers of closed field lines. It indicates that reconnected field lines from double cusp reconnection were interacting to induce another reconnection at the mid‐latitude magnetopause. Our results suggest that magnetopause reconnection was more efficient or frequent under sub‐Alfvénic solar wind with much lower beta plasma conditions than typical conditions. We discuss the role of such efficient reconnection in the formation of low‐latitude boundary layers.

MISC

 25

書籍等出版物

 2

講演・口頭発表等

 149

所属学協会

 1

共同研究・競争的資金等の研究課題

 8