研究者業績

船木 一幸

フナキ イッコウ  (Ikkoh Funaki)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙飛翔工学研究系 教授
総合研究大学院大学 先端学術院 宇宙科学コース 教授
学位
博士(工学)(1995年3月 東京大学)

J-GLOBAL ID
200901056190267532
researchmap会員ID
1000253787

外部リンク

論文

 318
  • Yuya Oshio, Shogo Masuyama, Hiroki Watanabe, Ikkoh Funaki
    Journal of Electric Propulsion, 4, article number 15 1-19 2025年3月  査読有り
  • Yuya Oshio, Shogo Masuyama, Hiroki Watanabe, Ikkoh Funaki
    Journal of Electric Propulsion, 3, article number 33 1-19 2024年12月  査読有り
  • Rinpei Sakata, Masahiro Inada, Noboru Itouyama, Ken Matsuoka, Jiro Kasahara, Akira Kawasaki, Akiko Matsuo, Ikkoh Funaki
    Journal of Propulsion and Power 1-10 2024年6月20日  査読有り
    A coupled cylindrical rotating detonation engine (RDE) with two cylindrical RDEs (both combustors had a combustor inner diameter of 23 mm and an axial length of 30 mm) placed next to each other was tested for rocket clustering application. The objective of the experiment was to achieve two-engine synchronized initiation with a single igniter. Experiments were conducted on the inner wall of the combustors with different connecting-hole diameters and wall heights to evaluate the ignition delay time, combustion mode, and propulsion performance. The propellants were gaseous ethylene and oxygen, and experiments were conducted under constant conditions of mass flow rate ([Formula: see text]), equivalence ratio ([Formula: see text]), and backpressure (approximately 10 kPa). When the two combustion chambers were completely separated by a wall, ignition occurred with a time delay of 260 ms in the chamber without an igniter. However, when a large hole ([Formula: see text] diameter) was placed in the wall separating the two combustion chambers, synchronous initiation was successful. Synchronous initiation was also successful when the wall height was lowered (7-mm height). Under both conditions, the same level of specific impulse was achieved as for RDEs operating at the same mass flux.
  • Tomoki Sato, Kotaro Nakata, Kazuki Ishihara, Noboru Itouyama, Ken Matsuoka, Jiro Kasahara, Akira Kawasaki, Daisuke Nakata, Hikaru Eguchi, Masaharu Uchiumi, Akiko Matsuo, Ikkoh Funaki
    Combustion and Flame 264 113443-113443 2024年6月  査読有り
  • Kazuki Ishihara, Tomoki Sato, Tomoaki Kimura, Kosuke Nakajima, Kotaro Nakata, Noboru Itouyama, Akira Kawasaki, Ken Matsuoka, Koichi Matsuyama, Jiro Kasahara, Hikaru Eguchi, Daisuke Nakata, Masaharu Uchiumi, Akiko Matsuo, Ikkoh Funaki
    Journal of Spacecraft and Rockets 1-11 2024年5月28日  査読有り
    There are few experimental studies on rotating detonation engines (RDEs) with liquid propellants. This study reveals the static thrust performance of a cylindrical RDE with ethanol and liquid nitrous oxide as propellants under atmospheric pressure. This RDE had an inner diameter of 40 mm, a maximum combustor length of 230 mm, a nozzle contraction ratio of 1.7, and a nozzle expansion ratio of 9.1. Nineteen experiments were conducted at total mass flow rates of [Formula: see text], mixture ratios of 3.6–5.9, and combustion pressures of 0.35–0.46 MPa, resulting in a maximum detonation velocity of [Formula: see text] (approximately 80% of the theoretical detonation velocity, [Formula: see text]), maximum thrust at sea level of 294 N, and maximum specific impulse at sea level of 148 s. In addition, the maximum characteristic exhaust velocity, [Formula: see text], was [Formula: see text], which was 99% of the theoretical value. The characteristic length of the combustion chamber at this time was 0.15 m. Since conventional rocket combustion requires 1.57 m to achieve the same [Formula: see text] efficiency, this study shows that detonation combustion can reduce the combustor size by 88%.

MISC

 427

主要な書籍等出版物

 6
  • 船木 一幸, 山川 宏
    In-Tech 2012年3月 (ISBN: 9789535103394)

講演・口頭発表等

 652
  • Koki Inoue, Takashi Sakaguchi, Tomoyuki Ikeda, Hideyuki Horisawa, Shigeru Yamaguchi, Yoshinori Nakayama, Ikkoh Funaki
    Joint Symposium: 32nd ISTS & 9th NSAT 2019年6月
  • Naoji Yamamoto, Ryo Ikeda, Ippei Takesue, Masakatsu Nakano, Yasushi Ohkawa, Ikkoh Funaki
    Joint Symposium: 32nd ISTS & 9th NSAT 2019年6月
  • Ikkoh Funaki, Shinatora Cho, Tadahiko Sano, Tsutomu Fukatsu, Yosuke Tashiro, Taizo Shiiki, Yoichiro Nakamura
    Joint Symposium: 32nd ISTS & 9th NSAT 2019年6月
  • 船木 一幸, 張 科寅, 佐野 伊彦, 深津 敦, 田代 洋輔, 椎木 泰三, 中村 陽一郎
    第50期年会講演会 2019年4月18日 日本航空宇宙学会
  • 井上 孝輝, 井上 孝輝, 坂口 貴司, 池田 知行, 堀澤 秀之, 山 口 滋, 中山 宜典, 船木 一幸
    第50期年会講演会 2019年4月
  • 船木一幸, 張科寅, 佐野伊彦, 深津敦, 田代洋輔, 椎木泰三, 中村陽一郎
    第59回航空原動機・宇宙推進講演会 2019年3月6日 日本航空宇宙学会
  • 山本直嗣, 池田凌, 竹末一平, 森田太智, 中野正勝, 大川恭志, 船木一幸
    第59回航空原動機・宇宙推進講演会 2019年3月
  • 金周会, 横尾颯也, 後藤啓介, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸
    衝撃波シンポジウム 2019年3月
  • 後藤啓介, 横尾颯也, 金周会, 佐藤朋之, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸, 安田一貴, 八木橋央光, 有松昂輝, 中田大将, 内海政春, 川島秀人
    2019年3月
  • 朝原元夢, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸
    衝撃波シンポジウム 2019年3月
  • 梶村 好宏, 中山 聡, 萩原 達将, 大塩 裕哉, 船木 一幸
    宇宙科学に関する室内実験シンポジウム 2019年2月 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)
    平成30年度宇宙科学に関する室内実験シンポジウム (2019年2月28日-3月1日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)相模原キャンパス), 相模原市, 神奈川県資料番号: SA6000139049
  • 田内思担, 大塩裕哉, 船木一幸
    宇宙科学に関する室内実験シンポジウム 2019年2月 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)
    平成30年度宇宙科学に関する室内実験シンポジウム (2019年2月28日-3月1日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)相模原キャンパス), 相模原市, 神奈川県資料番号: SA6000139036
  • 村山裕輝, 上野一磨, 大塩裕哉, 堀澤秀之, 船木一幸
    宇宙科学に関する室内実験シンポジウム 2019年2月 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)
    平成30年度宇宙科学に関する室内実験シンポジウム (2019年2月28日-3月1日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)相模原キャンパス), 相模原市, 神奈川県資料番号: SA6000139035
  • 山本直嗣, 池田凌, 竹末一平, 森田太智, 中野正勝, 大川恭志, 船木一幸
    宇宙科学に関する室内実験シンポジウム 2019年2月
  • 宮坂武志, 山本直嗣, 竹ヶ原春貴, 渡邊裕樹, 船木一幸
    宇宙科学に関する室内実験シンポジウム 2019年2月
  • 船木 一幸
    平成30年度宇宙輸送シンポジウム 2019年1月17日 JAXA 宇宙科学研究所
  • 船木一幸
    宇宙輸送シンポジウム 2019年1月 JAXA 宇宙科学研究所
  • 井上孝輝, 坂口貴司, 池田知行, 堀澤秀之, 山口滋, 中山宜典, 船木一幸
    宇宙輸送シンポジウム 2019年1月
  • 牧麦, 船木一幸, 山極芳樹, 鳥羽瑛仁
    宇宙科学技術連合講演会 2019年1月
  • 荒井啓之, 山極芳樹, 大塩裕哉, 西田浩之, 船木一幸
    宇宙輸送シンポジウム 2019年1月
  • 鳥井健笑, 大塩裕哉, 窪田健一, 船木一幸, 奥野喜裕
    宇宙輸送シンポジウム 2019年1月
  • 牧麦, 船木一幸, 山極芳樹, 鳥羽瑛仁
    平成30年度宇宙輸送シンポジウム 2019年1月
  • 村山裕輝, 上野一磨, 大塩裕哉, 堀澤秀之, 船木一幸
    宇宙科学技術連合講演会 2018年10月
  • 萩原 達将, 梶村 好宏, 大塩 裕哉, 船木 一幸, 山川 宏
    宇宙科学技術連合講演会 2018年10月 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)
    平成29年度宇宙科学に関する室内実験シンポジウム (2018年2月26日-27日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)相模原キャンパス), 相模原市, 神奈川県資料番号: SA6000123021
  • 梶村好宏, 中山聡, 萩原達将, 大塩裕哉, 船木一幸
    宇宙科学技術連合講演会 2018年10月
  • 荒井啓之, 山極芳樹, 大塩裕哉, 西田浩之, 船木一幸
    宇宙科学技術連合講演会 2018年10月
  • 田内思担, 大塩裕哉, 船木一幸
    宇宙科学技術連合講演会 2018年10月
  • 久本泰慶, 矢部高宏, 船木一幸, 佐野伊彦, 鳩岡恭志, 深津敦, 中川貴史, 細田誠也, 小田原靖
    宇宙科学技術連合講演会 2018年10月
  • 池田凌, 山本直嗣, 中野正勝, 大川恭志, 船木一幸
    宇宙科学技術連合講演会 2018年10月
  • 鳥井健笑, 大塩裕哉, 窪田健一, 船木一幸, 奥野喜裕
    2018年10月
  • 牧麦, 船木一幸, 山極芳樹, 鳥羽瑛仁
    第62回宇宙科学技術連合講演会 2018年10月
  • 船木一幸, 張科寅, 佐野伊彦, 深津敦, 田代洋輔, 椎木泰三, 中村陽一郎
    第62回宇宙科学技術連合講演会 2018年10月
  • Kenichi Kubota, Yuya Oshio, Hiroki Watanabe, Shinatora Cho, Ikkoh Funaki
    2018 Joint Propulsion Conference, AIAA Propulsion and Energy Forum 2018年7月
  • Kiyoshi Kinefuchi, Shinatora Cho, Yoshiki Matsunaga, Daisuke Goto, Hiroki Watanabe, Takahiro Yabe, Tadahiko Sano, Tsutomu Fukatsu, Ikkoh Funaki
    2018 Joint Propulsion Conference, AIAA Propulsion and Energy Forum 2018年7月
  • Shitan Tauchi, Akira Kawasaki, Masakatsu Nakane, Kenichi Kubota, Ikkoh Funaki
    Asian Joint Conference on Propulsion and Power 2018年3月
  • 野々村 拓也, 橋本 安寿佳, 久保 海, 吉田 裕人, 東浦 孝典, 船木 一幸, 大塩 裕哉, 佐藤 修一
    日本物理学会講演概要集 2017年 一般社団法人 日本物理学会
  • 久保 海, 野々村 拓也, 東浦 孝典, 大塩 裕哉, 船木 一幸, 佐藤 修一
    日本物理学会講演概要集 2017年 一般社団法人 日本物理学会
    <p>スペース重力波アンテナDECIGOに搭載されるスラスタには,推力雑音が0.1µN程度以下[0.1~10Hz帯]という性能が想定されている.そこで本研究ではスラスタの性能評価に向け,微小な推力雑音を測定する装置として捻じれ振り子を用いたスラストスタンドの開発を行った.またこれに伴いプロトタイプの装置の感度評価を行った.本講演では装置開発の現状と今後の展望を報告する.</p>
  • Kazuki Ishihara, Junpei Nishimura, Keisuke Goto, Soma Nakagami, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Hideki Moriai, Hiroto Mukae, Kazuki Yasuda, Daisuke Nakata, Kazuyuki Higashino
    AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting 2017年 American Institute of Aeronautics and Astronautics Inc.
    Study of a Rotating Detonation Engine (RDE) has been carried out in many research institutions. The RDE has the advantage of high efficiency, simple structure and short combustor length. Toward the practical use for rocket engines, the evaluation of thrust efficiency at vacuum condition is necessary. In addition, it’s necessary to find a cooling method to endure the high heat load by detonation combustion. In this study, ethylene - oxygen mixtures are used as propellant, and we applied C/C composite, which is a heat resistant material, to a RDE and carried out a long-duration combustion test at sea level. As a result, we succeeded in the long-duration rotating detonation engine combustion demonstration of 6- 10 s at sea level for the first time in the world as rocket engine use, and the maximum thrust and the maximum specific impulse were achieved 301 N and 144 s.
  • Junichi Higashi, Chikara Ishiyama, Soma Nakagami, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Hideki Moriai
    AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting 2017年 American Institute of Aeronautics and Astronautics Inc.
    A rotating detonation turbine engine has simpler structure and higher thermal efficiency than a conventional gas turbine engine. In this study, we designed a rotating detonation turbine engine with single stage centrifugal compressor, combustion chamber, and single stage radial flow turbine which are placed on one side of rotor disk. We performed cold flow experiments and combustion experiments. As results of cold flow test, compressor can supply air 52 g/s. In combustion experiments, we supply pressured oxidizer and fuel from outside of engine. As a results, combustion propagation speed was 600 - 1300 m/s. this is about 25 – 45 % of Chapman – Jouget detonation velocity. In addition, rotational speed rises by 160 rpm during combustion.
  • Shinatora Cho, Hiroki Watanabe, Kenichi Kubota, Ikkoh Funaki
    52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016 2016年 American Institute of Aeronautics and Astronautics Inc, AIAA
    The importance of treatment of the cathode boundary was investigated intended for future self-consistent simulation of cathode coupling effects. JAXA fully kinetic particle code was applied to the discharge simulation of a SPT-100-like Hall thruster (discharge voltage 300 V and mass flow rate 5 mg/s operation condition), and four different cases of cathode boundary treatment were tested. Agreement of thrust and discharge current within 10 % error compared to the measurement were achieved without using any anomalous diffusion models in the baseline case treating the cathode boundary empirically. The preliminary simulation results of the cases treating the cathode boundary suggested that the electron injection conditions (quasi-neutrality, energy, density) can have significant impact on the simulation result of the plasma properties and electron flow.
  • Keisuke Goto, Yuichi Kato, Kazuki Ishihara, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki
    52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016 2016年 American Institute of Aeronautics and Astronautics Inc, AIAA
    Theoretically, a Rotating Detonation Engine (RDE) has higher thermal efficiency than a conventional gas turbine engine. In addition, RDE has a potential to shroten the combustuion chamber volume and makes it possible to be a simple strucuture. In order to practicalize RDEs, the optimum propellant injection configurations is necessary for steady combustion and high engine performance because it has a significant role for filling sufficient mixing layers in the combustion chamber. However, CFD analysis are usually done with premixed propellant, whereas experimental investigations are limited in terms of injector configulations. In this work, the slight difference of propagation states of detonation waves due to an increase in the number of fuel holes was not observed. Also, we shows a transiton state of detonation waves with a narrow oxidizer slit, and discuss the phenomenon.
  • Chikara Ishiyama, Koji Miyazaki, Soma Nakagami, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki
    52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016 2016年 American Institute of Aeronautics and Astronautics Inc, AIAA
    Rotating detonation engines (RDEs) can get thrust or work by keeping detonation waves propagating in circumferential direction. Our objective is to apply rotating detonation engines (RDEs) to aircraft engines since we expect that the aircraft such as airplanes is to fly longer range by more simple structure. In this study, we designed a rotating detonation turbine engine (RDTE) with a single stage centrifugal compressor and a single stage radial flow turbine. The outer diameter of RDTE is about 200 mm. The revolution speed is 110000 rpm and rated air mass flow rate was 0.610 kg/s. We made two-parallel-plane rotating detonation combustor. We performed hot test with ethylene and oxygen. We analyzed several combustion modes with streak pictures and pressure time history. We observed the number of detonation waves, quenching and re-ignition phenomena by streak pictures.
  • Yuichi Kato, Kazuki Ishihara, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki
    54th AIAA Aerospace Sciences Meeting 2016年 American Institute of Aeronautics and Astronautics Inc, AIAA
    A rotating detonation engine is an engine using continuous detonation in an annular combustor, and make thrust. Because detonation wave propagates in supersonic and in very small region, the combustor can be shortened. Programs in the combustor are high pressure loss when propellant is injected and necessity of cooling due to high heat flux. However, the physics of detonation combustion in an annular combustor is still not clear. Especially combustion efficiency, influence of injector shape of a rotating detonation combustor are not reported a lot. This paper reports measurement result of combustor stagnation pressure and influence of injector on characteristic velocity efficiency. Then convergent-divergent nozzle was used to increase thrust efficiency. In addition we measured temperature of the combustor and estimated heat flux.
  • Shunsuke Takagi, Keisuke Hosono, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki
    54th AIAA Aerospace Sciences Meeting 2016年 American Institute of Aeronautics and Astronautics Inc, AIAA
    A pulse detonation thruster (PD thruster) is a kind of reaction control system for controlling the attitude of a spacecraft using high-precision short-pulse thrust by intermittent detonation wave. Using a liquid-purge method proposed by Matsuoka et al. (Combustion Science and Technology, Vol. 187, No. 5, pp. 747-764, 2015), a 3N-calss PD thruster demonstrator was constructed in which the total length of combustor was 491.5 mm, inner diameter was 10 mm, and the total weight was 1241 g. In the liquid-purge method (LIP method) residual burned gas in combustor is cooled and purged by the latent heat of injected liquid droplet. This purge technique can realize a pulse detonation cycle using only fuel and oxidizer. Therefore it is possible to operate the pulse detonation cycle at high frequency without a purge process and a purge gas system. The thrust measurement experiment using the PD thruster at an operation frequency of 50 Hz was carried out and the thruster performance was evaluated. In a condition that injection duration was 6 ms, a time-averaged thrust of 2.3 ± 0.1 N, a propellant-based specific impulse of 113 ± 11 s, and a thrust-to-engine weight ratio of 0.19 were obtained. This thrust-to-engine weight ratio was the same level of a conventional 1N-calss monopropellant thruster. Furthermore the impulse in each pulse detonation cycle was 20.8 ± 2.6 mNs and the impulse repeatability was ± 12.3%. Moreover, the centroid time that is defined as the delay from the input signal to the thrust was 7.9 ± 0.1 ms. Therefore it was confirmed that a PD thruster has high thruster performance, namely, the high impulse repeatability and the high thrust response.
  • Toshinori Ikenaga, Masayoshi Utashima, Nobuaki Ishii, Yasuhiro Kawakatsu, Makoto Yoshikawa, Ikkoh Funaki, Takahiro Iwata
    SPACEFLIGHT MECHANICS 2016, PTS I-IV 2016年 UNIVELT INC
    After the successful launch on the world first spacecraft, Sputnik 1 by the former Soviet Union in 1957, 58 years has passed. In 1960, Pioneer 5 of the United States escaped the Earth's gravity at the first time, and since then many interplanetary explorers had set to sail interplanetary. However, even in the present day, interplanetary voyages are not still easy. First, interplanetary missions require large amounts of delta-V, and second, the opportunity to get to the destination opens only every synodic period with the destination celestial body. For example, the synodic period with Mars is about 2 years, which means the opportunity to get to Mars opens every 2 years. For such circumstances, this paper proposes a new type of low-thrust orbit design method, "Interplanetary Parking Method" that realizes "anytime" launch of deep-space explorers. The proposed interplanetary parking method enables to make an Earth return orbit with an arbitrary time-of-flight connecting to the minimum energy transfer orbit to a destination. While the time-of-flight of the transfer orbit is fixed, the Earth return orbit with the arbitrary time-of-flight virtually eliminates the severe launch window constraint in interplanetary missions. As application of the proposed method, the paper demonstrates dual launch trajectory design of explorers to different destinations i.e., Mars and Venus. The proposed method will widen the scope of opportunity for interplanetary missions.
  • 久保 海, 野々村 拓也, 東浦 孝典, 大塩 裕哉, 船木 一幸, 佐藤 修一
    日本物理学会講演概要集 2016年 一般社団法人 日本物理学会
  • K. Kubota, Y. Oshio, H. Watanabe, S. Cho, Y. Ohkawa, I. Funaki
    52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016 2016年
    © 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. A laboratory model of a hollow cathode with a radiative heater was built and tested for discharge currents of 10-50 A. Plasma ignitions and also discharge operations were successfully demonstrated even if the heater was not wrapped with an insulator, which will lead to robustness against heater breakdown. The voltage-current characteristic indicates that mode transition occurred between 30 and 40 A for a mass flow rate of 30 sccm. To investigate the flow field, a Hybrid-PIC simulation was conducted for a mass flow rate of 30 sccm and a discharge current of 30 A. The result shows acceptable distributions of the electron density, electric potential, and electron temperature inside and outside the cathode. The keeper’s floating voltage was close to the experimental data, but was slightly higher than experimental data. Changing the parameters of the anomalous resistivity can adjust the keeper’s floating voltage, but it has strong impact on the plasma properties.
  • Burak Karadag, Shinatora Cho, Yuya Oshio, Yushi Hamada, Ikkoh Funaki, Kimiya Komurasaki
    52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016 2016年
    © 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. In this paper, we present external discharge plasma thruster (XPT), a prototype of erosion free low power Hall thruster which produces and sustains plasma discharge completely outside a cavity. Details of this novel Hall thruster design and preliminary test results are presented. The thrust and the anode specific impulse ranged from 0.5 to 17.4 mN, and from 108 to 1240 sec respectively at anode potentials of 100-150-200-250 V with anode mass flow rates of 0.48-0.95-1.43 mg/s. The anode efficiency ranged from 2.4 to 25.6 % at discharge powers from 11 to 412 W. Preliminary experiment results suggest that XPT has similar discharge characteristics with SPT and TAL. Performance of XPT is comparable to SPT and TAL at the same power level, and very stable operation (Δ<0.2) is possible over wide range of operational conditions.
  • Yuya Oshio, Satoshi Tonooka, Ikkoh Funaki
    52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016 2016年
    © 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. Magnetoplasmadynamic (MPD) thruster is a candidate of next generation electric propulsion system for a mission that high thrust is required. We are developing the high power Self-field MPD arcjet of several hundred kW class using a numerical and thermal design tool. We are testing quasi-steady MPD thrusters as the validation tool for numerical tool. In order to validate the numerical simulation or the predict of sheath effect, the electrode temperature measurement is necessary flowing to a great impact on the numerical simulation. This paper reports the cathode temperature measurement of the quasi-steady state MPD thruster with argon propellant in 160-1940 kW range and the cathode temperature using the 2-color pyrometer that we recently developed. The cathode tip temperature is near 3000 K above 13 kA. We reveals the temperature distribution heating only the cathode tip peculiar to the quasi-steady state experiment in lower the theoretical critical current. In addition, the cathode temperature change is clarified of 1 ms quasi-steady operation.
  • 笠原 次郎, 加藤 優一, 中神 壮馬, 後藤 啓介, 松岡 健, 松尾 亜紀子, 船木 一幸
    平成27年度宇宙輸送シンポジウム 2016年1月

共同研究・競争的資金等の研究課題

 31

産業財産権

 4