研究者業績

伊藤 琢博

イトウ タカヒロ  (Takahiro Ito)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 助教

研究者番号
30872444
ORCID ID
 https://orcid.org/0000-0003-1491-1940
J-GLOBAL ID
202001000326595612
researchmap会員ID
R000000445

主要な論文

 19
  • Takahiro Ito
    Astronomy & Astrophysics 682(A38) 2024年2月  査読有り筆頭著者最終著者責任著者
  • Takahiro Ito, Shin-ichiro Sakai
    Journal of Guidance, Control, and Dynamics 46(4) 695-708 2023年4月  査読有り筆頭著者責任著者
  • Takahiro Ito, Shin-ichiro Sakai
    Journal of Guidance, Control, and Dynamics 44(4) 854-861 2021年4月  査読有り筆頭著者責任著者
  • T. Ito, S. Sakai
    Acta Astronautica 176 438-454 2020年11月  査読有り筆頭著者責任著者
    © 2020 IAA Onboard computation of a fuel-optimal trajectory is an indispensable technology for future lunar and planetary missions with pinpoint landings. This paper proposes a throttled explicit guidance (TEG) scheme under bounded constant thrust acceleration. TEG is capable of achieving fuel-optimal large diversions with good accuracy and can find optimal solutions. Thus far, the TEG algorithm is unique as it offers an explicit and simultaneous search method for the fuel-optimal thrust direction and thrust magnitude switching in predictor-corrector iterations. Fast numerical search is realized with a straightforward computation of seven final states (position, velocity, and the Hamiltonian) from seven unknowns (six adjoint variables for position and velocity and one final time). In addition, global convergence capability is enhanced by implementing the damped Newton's method. A number of simulations of large diversions show the excellent convergence of the TEG algorithm within at most 15 iterations from a cold start. The experimental results of the runtime measurement of the TEG algorithm support its real-time feasibility on a flight processor. These features of the TEG are suitable for onboard guidance of pinpoint landings.
  • T. Ito, T. Yamamoto, T. Nakamura, H. Habu, H. Ohtsuka
    Acta Astronautica 170 206-223 2020年5月  査読有り筆頭著者責任著者
    © 2019 IAA This paper investigates the launch capability of the SS-520 as a CubeSat launch vehicle. The SS-520 was developed by JAXA originally as a two-stage, spin-stabilized, solid-propellant sounding rocket. With less than 2.6 tons in total mass and 10 m in length, the SS-520-5 successfully launched a single 3U-sized CubeSat into orbit on February 3, 2018. The SS-520-5 obtained its capability as a CubeSat launch vehicle by installing a 3rd stage solid motor in addition to the RCS between the 1st and 2nd stages. However, its launch capability was limited due to its rocket system configuration. In order to pursue the SS-520's launch capability, two effective modifications from the SS-520-5 are proposed: thrust enhancement of the 1st stage motor and installation of an additional RCS between the 2nd and 3rd stages. The framework of launch capability analysis is established by a multi-objective genetic algorithm (MOGA), where its two objectives are selected as the altitudes of perigee and apogee. The analysis reveals that the two proposed modifications to the SS-520-5 work effectively but differently. The 10% increase of the 1st stage enhancement is particularly effective when the target altitude of perigee is low (e.g., 200 km), whereas the installment of the additional RCS with 30 kg increases accessibility to a much higher altitude of perigee, even to circular orbit reaching altitudes of 550 km for a 1U-sized CubeSat and 280 km for a 6U-sized CubeSat. The simultaneous application of both modifications would result in launch capability able to deliver a 10-kg payload. From a more general perspective, the results in this paper suggest that it is possible for a very small launch vehicle (VSLV) of the 3-ton class and 10 m in length to deliver a 10-kg-class payload into low Earth orbit.
  • T. Ito, S. Ikari, R. Funase, S. Sakai, Y. Kawakatsu, A. Tomiki, T. Inamori
    Acta Astronautica 152 299-309 2018年11月  査読有り筆頭著者責任著者
    © 2018 IAA This study proposes a solar sailing method for angular momentum control of the interplanetary micro-spacecraft PROCYON (PRoximate Object Close flYby with Optical Navigation). The method presents a simple and facile practical application of control during deep space missions. The developed method is designed to prevent angular momentum saturation in that it controls the direction of the angular momentum by using solar radiation pressure (SRP). The SRP distribution of the spacecraft is modeled as a flat and optically homogeneous plate at a shallow sun angle. The method is obtained by only selecting a single inertially fixed attitude with a bias-momentum state. The results of the numerical analysis indicate that PROCYON's angular momentum is effectively controlled in the desired directions, enabling the spacecraft to survive for at least one month without momentum-desaturation operations by the reaction control system and for two years with very limited fuel usage of less than 10 g. The flight data of PROCYON also indicate that the modeling error of PROCYON's SRP distribution is sufficiently small at a small sun angle (<10°) of the order of 10−9 Nm in terms of its standard deviation and enables the direction of the angular momentum around the target to be maintained.

講演・口頭発表等

 86
  • Adrian M. Glauser, Sascha P. Quanz, Jonah Hansen, Felix Dannert, Michael J. Ireland, Hendrik Linz, Olivier Absil, Eleonora Alei, Daniel Angerhausen, Thomas Birbacher, Denis Defrère, Andrea Fortier, Philipp A. Huber, Jens Kammerer, Romain Laugier, Tim Lichtenberg, Lena Noack, Mohanakrishna Ranganathan, Sarah Rugheimer, Vladimir Airapetian, Yann Alibert, Pedro J. Amado, Marius Anger, Narsireddy Anugu, Max Aragon, David J. Armstrong, Amedeo Balbi, Olga Balsalobre-Ruza, Deepayan Banik, Mathias Beck, Surendra Bhattarai, Jonas Biren, Jacopo Bottoni, Marrick Braam, Alexis Brandeker, Lars A. Buchhave, José A. Caballero, Juan Cabrera, Ludmila Carone, Óscar Carrión-González, Amadeo Castro-González, Kenny Chan, Ligia F. Coelho, Tereza Constantinou, Nicolas Cowan, William Danchi, Colin Dandumont, Jeanne Davoult, Arjun Dawn, Jean-Pierre P. de Vera, Pieter J. de Visser, Caroline Dorn, Juan A. Duque Lara, Mark Elowitz, Steve Ertel, Yuedong Fang, Simon Felix, Jonathan Fortney, Malcolm Fridlund, Antonio García Muñoz, Cedric Gillmann, Gregor Golabek, John L. Grenfell, Greta Guidi, Octavio Guilera, Janis Hagelberg, Janina Hansen, Jacob Haqq-Misra, Nathan Hara, Ravit Helled, Konstantin Herbst, Nina Hernitschek, Sasha Hinkley, Takahiro Ito, Satoshi Itoh, Stavro Ivanovski, Markus Janson, Anders Johansen, Hugh Jones, Stephen Kane, Daniel Kitzmann, Andjelka B. Kovacevic, Stefan Kraus, Oliver Krause, J. M. Diederik Kruijssen, Rolf Kuiper, Alen Kuriakose, Lucas Labadie, Sylvestre Lacour, Antonino F. Lanza, Laurits Leedjärv, Monika Lendl, Michaela Leung, Jorge Lillo-Box, Jérôme Loicq, Rafael Luque, Suvrath Mahadevan, Liton Majumdar, Fabien Malbet, Franco Mallia, Joice Mathew, Taro Matsuo, Elisabeth Matthews, Victoria Meadows, Bertrand Mennesson, Michael R. Meyer, Karan Molaverdikhani, Paul Mollière, John Monnier, Ramon Navarro, Benard Nsamba, Kenshiro Oguri, Apurva Oza, Enric Palle, Carina Persson, Joe Pitman, Eva Plávalová, Francisco J. Pozuelos, Andreas Quirrenbach, Ramses Ramirez, Ansgar Reiners, Ignasi Ribas, Malena Rice, Berke C. Ricketti, Peter Roelfsema, Amedeo Romagnolo, María P. Ronco, Martin Schlecker, Jessica Schonhut-Stasik, Edward Schwieterman, Antranik A. Sefilian, Eugene Serabyn, Chinmay Shahi, Siddhant Sharma, Laura Silva, Swapnil Singh, Evan L. Sneed, Locke Spencer, Vito Squicciarini, Johannes Staguhn, Karl Stapelfeldt, Keivan Stassun, Motohide Tamura, Benjamin Taysum, Floris van der Tak, Tim A. van Kempen, Gautam Vasisht, Haiyang S. Wang, Robin Wordsworth, Mark Wyatt
    Optical and Infrared Interferometry and Imaging IX 2024年8月28日 SPIE
  • 横田健太朗, 中平聡志, 秋月祐樹, 金谷周朔, 後藤健太, 伊藤琢博, 植田聡史, 坂井真一郎, 宮澤優, 福田 盛介, 櫛木賢一, 澤井秀次郎
    第34回アストロダイナミクスシンポジウム 2024年7月
  • 坂田泰生, 丸祐介, 森治, 河野太郎, 伊藤琢博, 澤井秀次郎, 能見公博
    第34回アストロダイナミクスシンポジウム 2024年7月
  • Paolo Ernesto Ranno, Shujiro Sawai, Takahiro Ito
    The 34th Workshop on JAXA Astrodynamics and Flight Mechanics 2024年7月
  • Takuya Iwaki, Kentaro Yokota, Koji Nagano, Karera Mori, Kentaro Komori, Kiwamu Izumi, Takahiro Ito
    The 2024 European Control Conference, Stockholm 2024年6月
  • Takahiro Ito
    29th International Symposium on Space Flight Dynamics, Darmstadt, Germany 2024年4月
  • Takahiro Ito
    School of Aeronautics and Astronautics, Purdue University (online lecture) 2024年4月  招待有り
  • Takahiro Ito
    Exoplanets and Habitability Group, Department of Physics, ETH Zurich (seminar) 2024年4月  招待有り
  • 中平, 聡志, 横田, 健太朗, 秋月, 祐樹, 金谷, 周朔, 後藤, 健太, 伊藤, 琢博
    2023年度 宇宙科学情報解析シンポジウム 2024年2月 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)
  • 伊藤琢博
    第22回DECIGOワークショップ 2023年10月
  • 伊藤, 琢博
    [第33回アストロダイナミクスシンポジウム講演後刷り集] 2023年7月 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)
  • 佐々木 貴広, 伊藤 琢博
    年会講演会 = JSASS annual meeting 2023年4月 日本航空宇宙学会
  • 中平 聡志, 増田敬史, 西山万里, 横田 健太朗, 伊藤 琢博
    2022年度 宇宙科学情報解析シンポジウム 2023年2月17日
  • 岩城拓弥, 横田健太朗, 長野晃士, 森かれら, 小森健太郎, 和泉究, 伊藤琢博
    宇宙科学技術連合講演会講演集(CD-ROM) 2023年
  • 岩城拓弥, 横田健太朗, 長野晃士, 森かれら, 小森健太郎, 和泉究, 伊藤琢博
    日本天文学会年会講演予稿集 2023年
  • 伊藤琢博
    第21回DECIGOワークショップ 2022年12月
  • 佐々木貴広, 松本祐樹, 伊藤琢博
    第66回宇宙科学技術連合講演会 2022年11月4日
  • 松本祐樹, 梅田浩貴, 大久保梨思子, 髙附翔馬, 佐々木貴広, 伊藤琢博
    第66回宇宙科学技術連合講演会 2022年11月1日
  • 伊藤琢博
    第66回宇宙科学技術連合講演会 2022年11月1日
  • 森光太朗, 谷口正, 市川勉, 竹内央, 坂井真一郎, 植田聡史, 伊藤 琢博
    第32回アストロダイナミクスシンポジウム(2022年) 2022年7月25日
  • 川村静児, 安東正樹, 瀬戸直樹, 佐藤修一, 武者満, 河野功, 横山順一, 田中貴浩, 井岡邦仁, 阿久津智忠, 高島健, 道村唯太, 伊藤琢博, 我妻一博, 浅田秀樹, 新居舜, 新谷昌人, 有冨尚紀, 五十里哲, 石川智浩, 石原秀樹, 和泉究, 市來淨與, 伊藤洋介, 岩口翔輝, BIN Wu, 上田暁俊, 植田憲一, 江口智士, 榎基宏, 榎本雄太郎, 黄靖斌, 大河正志, 大島由佳, 大原謙一, 大宮英俊, 小野將矢, 兼村晋哉, 川崎拓也, 川崎祐輝, 川添史子, 神田展行, 黒柳幸子, 洪鋒雷, 郡和範, 苔山圭以子, 小嶌康史, 固武慶, 小林史歩, 小森健太郎, 西條統之, 坂井真一郎, 阪上雅昭, 佐合紀親, 佐藤孝, 柴田大, 柴田大, 清水龍真, 真貝寿明, ZHU Zong-Hong, 宗宮健太郎, 祖谷元, 高野哲, 高橋弘毅, 高橋竜太郎, 高森昭光, 武田紘樹, 谷口敬介, 樽家篤史, 千葉剛, 辻川信二, 坪野公夫, 中尾憲一, 中澤知洋, 中須賀真一, 中野寛之, 長野晃士, 長野重夫, 中村康二, 中村卓史, 中山宜典, 西澤篤志, 端山和大, 原田知広, 姫本宣朗, 平松尚志, 藤田龍一, 藤本拓希, 藤本眞克, 二間瀬敏史, 細川瑞彦, 前田恵一, 松下周平, 水村彰吾, 向山信治, 森本泰玄, 八木絢外, 横山修一郎, 柳哲文, 渡辺泉実
    日本物理学会講演概要集(CD-ROM) 2022年
  • 神林, 賢, 伊藤, 琢博, 坂井, 真一郎, KAMBAYASHI, Masaru, ITO, Takahiro, SAKAI, Shin-Ichiro
    [第31回アストロダイナミクスシンポジウム講演後刷り集] = The 31th Workshop on JAXA Astrodynamics and Flight Mechanics 2021年7月 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)
    第31回アストロダイナミクスシンポジウム (2021年7月26-27日. オンライン開催) The 31th Workshop on JAXA Astrodynamics and Flight Mechanics 2021 (July 26-27, 2021. Online Meeting) 資料番号: SA6000167058 レポート番号: ASTRO-2021-C006
  • Takahiro Ito, Isao Kawano, Ikkoh Funaki, Shin-ichiro Sakai
    11th International ESA Conference on Guidance, Navigation & Control Systems 2021年6月
  • 植田聡史, 伊藤琢博, 坂井真一郎
    計測自動制御学会制御部門マルチシンポジウム(CD-ROM) 2021年
  • 鄭祥子, 清水敏文, 長谷川隆祥, 久保雅仁, 岡田則夫, 津野克彦, 伊藤琢博, 中坪俊一
    日本天文学会年会講演予稿集 2021年
  • 川村静児, 安東正樹, 瀬戸直樹, 佐藤修一, 武者満, 河野功, 横山順一, 田中貴浩, 井岡邦仁, 阿久津智忠, 高島健, 我妻一博, 浅田秀樹, 新谷昌人, 有冨尚紀, 五十里哲, 石川智浩, 石原秀樹, 和泉究, 市來淨與, 伊藤琢博, 伊藤洋介, 岩口翔輝, BIN Wu, 上田暁俊, 植田憲一, 江口智士, 榎基宏, 榎本雄太郎, 大河正志, 大原謙一, 兼村晋哉, 川崎拓也, 川添史子, 神田展行, 黒柳幸子, 洪鋒雷, 郡和範, 苔山圭以子, 小嶌康史, 固武慶, 小林史歩, 小森健太郎, 西條統之, 坂井真一郎, 阪上雅昭, 佐合紀親, 佐藤孝, 柴田大, 柴田大, 正田亜八香, 真貝寿明, ZHU Zong-Hong, 宗宮健太郎, 祖谷元, 高野哲, 高橋弘毅, 高橋竜太郎, 高森昭光, 武田紘樹, 谷口敬介, 樽家篤史, 千葉剛, 辻川信二, 坪野公夫, 内藤丈雄, 中尾憲一, 中澤知洋, 中須賀真一, 中野寛之, 長野晃士, 長野重夫, 中村康二, 中村卓史, 中山宜典, 西澤篤志, 端山和大, 原田知広, 姫本宣朗, 平松尚志, 藤田龍一, 藤本拓希, 藤本眞克, 二間瀬敏史, 細川瑞彦, 前田恵一, 松下周平, 道村唯太, 向山信治, 森本泰玄, 八木絢外, 山田梨加, 横山修一郎, 柳哲文, 渡辺泉実
    日本物理学会講演概要集(CD-ROM) 2021年
  • 鄭祥子, 長谷川隆祥, 長谷川隆祥, 清水敏文, 清水敏文, 津野克彦, 久保雅仁, 伊藤琢博, 岡田則夫, 中坪俊一, 西野徹雄
    日本天文学会年会講演予稿集 2021年
  • 神林賢, 伊藤琢博, 坂井真一郎
    宇宙科学技術連合講演会講演集(CD-ROM) 2021年
  • 植田聡史, 伊藤琢博, 坂井真一郎
    宇宙科学技術連合講演会講演集(CD-ROM) 2021年
  • 川村静児, 安東正樹, 瀬戸直樹, 佐藤修一, 武者満, 河野功, 横山順一, 田中貴浩, 井岡邦仁, 阿久津智忠, 高島健, 道村唯太, 伊藤琢博, 我妻一博, 浅田秀樹, 新居舜, 新谷昌人, 有冨尚紀, 五十里哲, 石川智浩, 石原秀樹, 和泉究, 市來淨與, 伊藤洋介, 岩口翔輝, WU Bin, 上田暁俊, 植田憲一, 江口智士, 榎基宏, 榎本雄太郎, 黄靖斌, 大河正志, 大島由佳, 大原謙一, 大宮英俊, 小野將矢, 兼村晋哉, 川崎拓也, 川崎祐輝, 川添史子, 神田展行, 黒柳幸子, 洪鋒雷, 郡和範, 苔山圭以子, 小嶌康史, 固武慶, 小林史歩, 小森健太郎, 西條統之, 坂井真一郎, 阪上雅昭, 佐合紀親, 佐藤孝, 柴田大, 柴田大, 清水龍真, 真貝寿明, ZHU Zong-Hong, 宗宮健太郎, 祖谷元, 高野哲, 高橋弘毅, 高橋竜太郎, 高森昭光, 武田紘樹, 谷口敬介, 樽家篤史, 千葉剛, 辻川信二, 坪野公夫, 中尾憲一, 中澤知洋, 中須賀真一, 中野寛之, 長野晃士, 長野重夫, 中村康二, 中村卓史, 中山宜典, 西澤篤志, 端山和大, 原田知広, 姫本宣朗, 平松尚志, 藤田龍一, 藤本拓希, 藤本眞克, 二間瀬敏史, 細川瑞彦, 前田恵一, 松下周平, 水村彰吾, 向山信治, 森本泰玄, 八木絢外, 横山修一郎, 柳哲文, 渡辺泉実
    日本物理学会講演概要集(CD-ROM) 2021年
  • 伊藤琢博, 河野功, 船木一幸, 坂井真一郎, 和泉究, 長野晃士, 五十里哲, 道村唯太, 安東正樹, 佐藤修一, 武者満, 佐藤訓志, 山田克彦, 松尾太郎, 金田英宏, 川村静児, 阿久津智忠, 正田亜八香
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • 林田清, 朝倉一統, 石倉彩美, 佐久間翔太郎, 米山友景, 野田博文, 澤上拳明, 鴨川航, 岡崎貴樹, 花岡真帆, 服部兼吾, 松下友亮, 峯田大靖, 善本真梨那, 大出優一, 袴田知宏, 松本浩典, 常深博, 中嶋大, 粟木久光, 寺島雄一, 川口俊宏, 伊藤琢博, 河野功, 五十里哲
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • 植田聡史, 伊藤琢博, 坂井真一郎
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • 水野貴秀, 福田盛介, 長谷川秀樹, 片山翔太, 徳田怜実, 伊藤琢博, 石田貴行, 坂井真一郎
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • 道村唯太, 五十里哲, 安東正樹, 伊藤琢博, 河野功, 船木一幸, 坂井真一郎, 和泉究, 長野晃士, 佐藤修一, 武者満, 佐藤訓志, 山田克彦, 松尾太郎, 金田英宏, 川村静児, 阿久津智忠, 正田亜八香
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • 佐藤修一, 伊藤琢博, 河野功, 船木一幸, 坂井真一郎, 和泉究, 長野晃士, 五十里哲, 道村唯太, 安東正樹, 武者満, 佐藤訓志, 山田克彦, 松尾太郎, 金田英宏, 川村静児, 阿久津智忠, 正田亜八香
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • 長谷川隆祥, 長谷川隆祥, 清水敏文, 伊藤琢博, 津野克彦, 久保雅仁, 村尾一, 横澤剛, 水本訓子, 藤島早織, 合田雄哉
    日本天文学会年会講演予稿集 2020年
  • Hirohito Ohtsuka, Naruhisa Sano, Masaru Nohara, Yasuhiro Morita, Takahiro Ito, Takayuki Yamamoto, Hiroto Habu
    Advances in the Astronautical Sciences 2020年
    © 2020, Univelt Inc. All rights reserved. ISAS/JAXA has successfully launched the micro-satellite “TRICOM-1R” by the world’s smallest orbit rocket “SS-520 No.5” from Uchinoura Space Center on February 3rd in 2018. ISAS modified the existing sounding rocket SS-520 adding a small 3rd-stage solid-motor and the attitude control system. It flies spinning for the attitude stabilization in the flight. Therefore, we devised the rhumb-line control system with a new scheme. This rhumb-line system has the high-performance functions; the high-preciseness, the high-maneuver rate and the suppression of the unnecessary nutation angle generated at the RCS injection. This paper reports the development of the G&C system and the flight results.
  • 川村静児, 安東正樹, 瀬戸直樹, 佐藤修一, 武者満, 河野功, 横山順一, 田中貴浩, 井岡邦仁, 阿久津智忠, 高島健, 我妻一博, 浅田秀樹, 新谷昌人, 有冨尚紀, 五十里哲, 石川智浩, 石原秀樹, 和泉究, 市來淨與, 伊藤琢博, 伊藤洋介, 岩口翔輝, 上田暁俊, 植田憲一, 江口智士, 榎基宏, 大河正志, 大原謙一, 兼村晋哉, 川添史子, 神田展行, 黒柳幸子, 洪鋒雷, 郡和範, 苔山圭以子, 小嶌康史, 固武慶, 小林史歩, 西條統之, 坂井真一郎, 阪上雅昭, 佐合紀親, 佐藤孝, 柴田大, 柴田大, 正田亜八香, 真貝寿明, ZHU Zong-Hong, 宗宮健太郎, 祖谷元, 高橋弘毅, 高橋竜太郎, 高森昭光, 谷口敬介, 樽家篤史, 千葉剛, 辻川信二, 坪野公夫, 内藤丈雄, 中尾憲一, 中澤知洋, 中須賀真一, 中野寛之, 長野晃士, 長野重夫, 中村康二, 中村卓史, 中山宜典, 西澤篤志, 端山和大, 原田知広, 姫本宣朗, 平松尚志, 藤田龍一, 藤本眞克, 二間瀬敏史, 細川瑞彦, 前田恵一, 松下周平, 道村唯太, 向山信治, 森本泰玄, 八木絢外, 山田梨加, 横山修一郎, 柳哲文, 渡辺泉実
    日本物理学会講演概要集(CD-ROM) 2020年
  • 伊藤琢博, 坂井真一郎, 植田聡史
    宇宙科学技術連合講演会講演集(CD-ROM) 2019年
  • 伊藤琢博, 五十里哲, 坂井真一郎, 河野功
    宇宙科学技術連合講演会講演集(CD-ROM) 2019年
  • Takahiro Ito, Shinichiro Sakai
    Proceedings of the International Astronautical Congress, IAC 2019年
    Copyright © 2019 by the International Astronautical Federation (IAF). All rights reserved. This paper focuses on an onboard method of computing a fuel-optimal trajectory for lunar and planetary pinpoint landings. We propose a throttled explicit guidance (TEG) scheme under a bounded thrust magnitude. The TEG algorithm is unique as it offers an explicit and simultaneous search method for the fuel-optimal thrust direction and magnitude switching in predictor-corrector iterations. The thrust direction is modeled exactly as an optimal solution whereas the thrust magnitude switching is obtained by evaluating a quadratically approximated thrust switching equation with its zeroth-order coefficient approximated to a constant value. These models are based on fuel-optimal control theory and enable a fast numerical search with a straightforward computation of seven final states (position, velocity, and the Hamiltonian) from seven unknowns (six adjoint variables for position and velocity and one final time). The Monte Carlo analysis shows an excellent convergence of the TEG algorithm to the optimal solutions within at most 22 iterations from a cold start. In addition, the zeroth-order coefficient of the thrust switching equation shows the best fuel optimality when it is taken around a nominal final mass of a lander. Nonetheless, it is remarkable that the fuel optimality is almost maintained in the order of only 0.1 % increase of the total fuel consumption for the worst case, even if the ambiguity exists on the value of the zeroth-order coefficient. This suggests that TEG does not necessarily require a precise estimate of the final mass or careful selection of the zeroth-order coefficient as a prerequisite to finding fuel optimal solutions. These results support TEG as being suitable for onboard guidance during pinpoint landings.
  • Yamamoto, Takayuki, Ito, Takahiro, Nakamura, Takahiro, Ito, Takashi, Nonaka, Satoshi, Habu, Hiroto, Inatani, Yoshifumi
    PROMOTE THE PROGRESS OF THE PACIFIC-BASIN REGION THROUGH SPACE INNOVATION 2019年 UNIVELT INC
    On February 3, 2018 at the JAXA Uchinoura Space Center, JAXA experimented SS-520 No. 5 launch with a 3U sized cube sat called TRICOM-1R aboard. After liftoff, flight of SS-520 No. 5 proceeded normally. Around 7 minutes 30 seconds into flight, TRICOM-1R separated and was inserted into its target orbit. And the launcher became the world's smallest class satellite launcher. SS-520 launch vehicle is one of sounding rockets operated in JAXA/ISAS, and originally two stage rocket. In this experiment, to make this vehicle put a satellite into orbit, the third stage motor is added. And this sounding rocket has four tail fins for spin stabilization, but usually don't have an attitude control system during the flight. But in this mission, it is needed to control its attitude to ignite second and third motor toward horizontal after first stage bum-out. The gas jet system is installed into between the first stage and the second stage of the vehicle as a unique active attitude control system. The gas jet system can control the spin axis direction and the spin rate of the vehicle during the coasting fight. Because of this constraint, the apogee altitude after the burn out of the first stage motor almost correspond with the perigee altitude of the elliptical orbit. In this mission, the sounding rocket-based Nano launcher is planned to put TRICOM-1R into the elliptical orbit. Its targeted apogee altitude is about 1,800 km and its perigee altitude is about 180 km. Because the perigee altitude is relatively low, the orbit life is very short. One of the mission requirements is to make the vehicle an orbit insertion with more than 30 days orbital lifetime. The vehicle error or the environment error deeply affect the achieved trajectory. These errors must be small enough to put TRICOM-1R into orbit. This paper discusses about the trajectory design on how to manage the sounding rocket into a satellite launching vehicle, the effect of the orbital distribution depending on the various errors, the flight safety analysis, and finally flight performance evaluation.
  • Satoshi Ikari, Takaya Inamori, Takahiro Ito, Ryu Funase
    SPACEFLIGHT MECHANICS 2019, VOL 168, PTS I-IV 2019年 UNIVELT INC
    In order to deeply understand orbital disturbances, the flight data of the PROCYON, which is the 50kg-class interplanetary micro-spacecraft was analyzed. In the telemetry data, we found two unexpected behaviors of angular momentum in Z-axis as compared with the accurate solar radiation pressure model. In order to clarify the causes of the angular momentum anomalies, several small disturbances like thermal radiation pressure, deformation of the structure, and interplanetary magnetic field effect, which are usually ignored are discussed in this study. The thermal radiation and deformation of the structure can explain the over-large Z-axis anomaly. The interplanetary magnetic field effect is correlated with the sudden change of Z-axis torque anomaly in several cases, but the cause of the anomaly is not completely revealed yet.
  • 澤山敬太, 鈴木雅晴, 池田任亮, 芝崎裕介, 下地治彦, 渡部大輔, 椋本佳宏, 坂井真一朗, 植田聡史, 伊藤琢博, 櫛木賢一, 澤井秀次郎, 福田盛介
    宇宙科学技術連合講演会講演集(CD-ROM) 2019年
  • 松尾太郎, 五十里哲, 石渡翔, 近藤宙貴, 河野功, 伊藤琢博
    宇宙科学技術連合講演会講演集(CD-ROM) 2019年
  • 五十里哲, 松下周平, 船曳敦漠, 鈴本遼, 石渡翔, 近藤宙貴, 伊藤琢博, 河野功, 坂井真一郎, 中須賀真一
    宇宙科学技術連合講演会講演集(CD-ROM) 2019年
  • 伊藤琢博, 山本高行, 坂井智彦, 川瀬誠, 清水成人, 志田真樹, 大塚浩仁, 佐野成寿, 野原勝, 稲垣盛人, 東健太, 小川奎弥, 林房男
    宇宙科学技術連合講演会講演集(CD-ROM) 2018年
  • 伊藤琢博, 植田聡史, 坂井真一郎
    宇宙科学技術連合講演会講演集(CD-ROM) 2018年
  • Takahiro Ito, Takayuki Yamamoto, Takahiro Nakamura, Hiroto Habu, Hirohito Ohtsuka
    Proceedings of the International Astronautical Congress, IAC 2018年
    Copyright © 2018 by the International Astronautical Federation (IAF). All rights reserved. This paper investigates the launch capability of the SS-520 as a CubeSat launch vehicle. The SS-520 was developed by JAXA originally as a two-stage, spin-stabilized, solid-propellant sounding rocket. With less than 2.6 tons in total mass and 10 meters in length, the SS-520-5 successfully launched a single 3U-sized CubeSat into orbit on February 3, 2018. The SS-520-5 obtained its capability as a CubeSat launch vehicle by installing a 3 rd stage solid motor in addition to the RCS between the 1st and 2nd stages. However, its launch capability was limited (in target altitudes of perigee and apogee at 180 km and 1800 km, respectively) due to its rocket system configuration. In order to pursue the SS-520's launch capability, two effective modifications from the SS-520-5 are proposed: thrust enhancement of the 1st stage motor and installation of an additional RCS between the 2nd and 3rd stages. Furthermore, the framework of launch capability analysis is established by a multi-objective genetic algorithm (MOGA), where its two objectives are selected as the altitudes of perigee and apogee. The problem maintains its simplicity through the selection of only eight design variables of the six acceleration directions and two coasting durations. The analysis reveals that the two proposed modifications to the SS-520-5 work effectively but differently. The 10% increase of the 1st stage enhancement is particularly effective when the target altitude of perigee is low (e.g., 200 km), whereas the installment of the additional RCS with 30 kg increases accessibility to a much higher altitude of perigee, even to circular orbit reaching altitudes of 550 km for a 1U-sized CubeSat and 280 km for a 6U-sized CubeSat. Each modified configuration with the 1st stage enhancement and additional RCS installment enables carrying a payload about twice as heavy as that of the SS-520-5. The application of both modifications would result in launch capability able to deliver a 10-kg payload. From a more general perspective, the results in this paper suggest that it is possible for a very small launch vehicle of the 3-ton class and 10 meters in length to deliver a 10-kg-class payload into low Earth orbit.

共同研究・競争的資金等の研究課題

 2

産業財産権

 2

主要な社会貢献活動

 20

メディア報道

 2