基本情報
- 所属
- 国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 准教授
- 学位
- 博士(工学)(名古屋大学)
- 研究者番号
- 50866481
- J-GLOBAL ID
- 201701004920973937
- researchmap会員ID
- B000277091
- 外部リンク
経歴
7-
2025年4月 - 現在
-
2021年7月 - 2025年3月
-
2021年1月 - 2025年3月
-
2021年1月 - 2025年3月
-
2019年4月 - 2020年12月
学歴
3-
2016年4月 - 2019年3月
-
2014年4月 - 2016年3月
-
2010年4月 - 2014年3月
受賞
12-
2023年3月
-
2020年5月
論文
32-
Applied Thermal Engineering 264 2025年4月1日 査読有りA loop heat pipe is a two-phase fluid loop driven by capillary force. Fabrication of a loop heat pipe evaporator by additive manufacturing has been investigated as a low-cost, quick-delivery method for producing a high-performance loop heat pipe. This study investigated the evaporation and heat transfer performance of a wick-integrated evaporator fabricated by additive manufacturing. It is essential to understand the thermal characteristics of the evaporator for a loop heat pipe with an additive-manufactured evaporator for all applications. A tested loop heat pipe with an additive-manufactured evaporator achieved a maximum heat transport capability of 120 W (heat flux: 7.96 W/cm2) and a minimum thermal resistance of 0.321 °C/W in the horizontal orientation at a 20 °C sink temperature. The evaporative heat transfer coefficient and heat leak ratio to the reservoir were calculated for each orientation test result. The maximum evaporative heat transfer coefficient was 50 kW/m2/K and the heat leak ratio was less than 10 % between 10 W and 70 W in the horizontal orientation. These results reveal that the increase in heat leakage to the reservoir due to the decrease in the evaporative heat transfer coefficient leads to the increase in the loop heat pipe operating temperature and thermal resistance. The novelty of this study is that it clarifies the relationship between a loop heat pipe's thermal resistance and evaporator thermal performance by correlating the evaporative heat transfer coefficient and the heat leakage of the wick-integrated evaporator, which uses additive manufacturing, based on the heat transport test results in each orientation.
-
International Journal of Thermal Sciences 207 2025年1月 査読有りA cryogenic capillary pumped loop (CCPL) is a highly efficient two-phase capillary-force-driven heat transport device that operates at cryogenic temperatures. CCPL satisfies the demands for space applications in cryogenic regions as it can transport heat over long distances without mechanical moving parts. In this study, the transient internal flow during the supercritical startup of CCPL was predicted, and various temperature relationships were used to determine whether CCPL starts up or not. The utilized CCPL comprised a wick (pore radius = 1.0 μm), exhibited a heat transport distance of 2 m, and was filled with nitrogen as the working fluid. The supercritical startup experiments were performed at a temperature range of 77–300 K; the startup procedure was initiated when the maximum temperature of CCPL decreased to ∼150 K. Three different liquid supply cycles were tested during the supercritical startup, and the startup time was reduced (a maximum and minimum of 4.1 and 1.9 h, respectively). CCPL started when the evaporator temperature was below the cold reservoir temperature. Thus, the temperature relationship between the cold reservoir and evaporator at the time of applying the heat load to the evaporator could be used to determine the possibility of starting CCPL. The startup was considered successful when the cold reservoir temperature was higher than the evaporator temperature, as the cold reservoir, which exhibited a two-phase state, supplied sufficient liquid to the evaporator, filling the inside of the evaporator with liquid.
-
International Journal of Heat and Mass Transfer 231 2024年10月 査読有り
-
Applied Thermal Engineering 255 123878-123878 2024年10月 査読有り筆頭著者責任著者
-
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 82-82 2024年8月23日
MISC
2-
共同利用・共同研究拠点「流体科学国際研究教育拠点」活動報告書 = Activity report Joint Usage/Research Center "Fluid Science Global Research and Education Hub" 141-143 2022年
講演・口頭発表等
119-
53rd International Conference on Environmental Systems 2024年7月
-
SPIE Astronomical Telescopes + Instrumentation 2024 2024年6月
-
SPIE Astronomical Telescopes + Instrumentation 2024 2024年6月
-
SPIE Astronomical Telescopes + Instrumentation 2024 2024年6月
担当経験のある科目(授業)
2-
2021年9月 - 現在
-
2022年9月航空宇宙流体工学特論(分担) (東北大学)
所属学協会
5共同研究・競争的資金等の研究課題
7-
日本学術振興会 科学研究費補助金 若手研究 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費補助金 基盤研究(B) 2023年4月 - 2026年3月
-
東北大学流体科学研究所 公募共同研究 2021年4月 - 2024年3月
-
文部科学省卓越研究員事業 令和2年度卓越研究員研究費 2021年1月 - 2022年3月
-
日本学術振興会 科学研究費補助金 若手研究 2020年4月 - 2022年3月