IEEE Transactions on Applied Superconductivity 32(6) 1-5 2022年 査読有り
The critical heat flux in liquid hydrogen is ten times higher than that in liquid helium and is approximately half of that in liquid nitrogen. Since the resistivity of pure metal such as copper or silver at 20 K is less than one-hundredth of that at 300 K, HTS magnets immersed in liquid hydrogen are expected to satisfy the fully cyostable condition or to be stable against high resistive heat generation enough for quench detection at a practical current density. In order to examine cryostability of HTS magnets in liquid hydrogen, a pool-cooled Bi2223 magnet with a 5 T magnetic field at 20 K has been designed, fabricated and tested in liquid nitrogen prior to excitation tests in liquid hydrogen. The magnet consists of six outer double pancake coils with the inner diameter of 0.20 m and four inner double pancake coils with the outer diameter of 0.16 m. The resistive voltage to initiate thermal runaway in the coil as-sembly in liquid nitrogen was higher than 1 V that is sufficient high for quench detection.
令和4年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium FY2022 2023年1月
令和4年度宇宙輸送シンポジウム(2023年1月12日-13日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)) , 相模原市, 神奈川県
Space Transportation Symposium FY2022 (January 12-13, 2023. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA)(ISAS)), Sagamihara, Kanagawa Japan
資料番号: SA6000184015
STCP-2022-015
<p>A loading system plays a role of loading and unloading liquid hydrogen between a carrier ship and a ground storage facility in hydrogen supply chain in which hydrogen in the form of liquid phase is transported by the carrier ship from a resource-rich country to a consuming country. An emergency release system (ERS), which is one of components of the loading system, is installed in the middle of transfer pipe of the loading system, and has function of separating and plugging the pipe at an abnormality during loading so as to prevent a large amount of cryogenic fluid from scattering. We have conducted R & D study of the ERS for liquid hydrogen based on an existing one for liquid natural gas (LNG). Whole system function of the ERS including separation behavior was verified conducting a field experiment with the ERS test model and liquid hydrogen. Through several tests, the separation mechanism and behavior were verified, and also, soundness of the seal mechanism was evaluated. While, auto-ignition phenomena were observed on the separation surface of the ERS after the separation, of which causes have not been identified yet. Characteristics of dispersion behavior of hydrogen that was released at the separation could be investigated measuring distribution of temperature and hydrogen concentration around the ERS test model.</p>
<p>To improve safety regulations for fuel cell vehicles and hydrogen infrastructure, experiments of cryo-compressed hydrogen leakage diffusion were conducted. The experimental apparatus can supply 90 MPa hydrogen of various temperature conditions. Measurement items were hydrogen concentration distribution, blast pressure, flame length, and radiant heat. In addition, high speed camera observation was carried out to investigate the near-field of cryogenic hydrogen jet at supercritical pressure. The experimental apparatus can supply 90 MPa hydrogen at various temperature conditions (50 K–300 K) at a maximum flow rate of 100 kg/h. The hydrogen leakage flow rate was measured using pinhole nozzles with different outlet diameters (0.2 mm, 0.4 mm, 0.7 mm, and 1 mm). It was confirmed that the hydrogen leakage flow rate increases as the supply temperature decreases. The hydrogen concentration distribution was measured by injecting high-pressure hydrogen from the 0.2-mm pinhole for 10 min under a constant pressure/temperature condition. As the hydrogen injection temperature decreased, it was found that the hydrogen concentration increased, and an empirical formula of the 1% concentration distance for the cryogenic hydrogen system was newly presented.</p>
<p>JAXA has constructed an experimental facility to pressurize and supply liquid hydrogen at a maximum pressure of 90 MPa to conduct experimental research on the injection of high pressure liquid hydrogen into the atmosphere. Liquid hydrogen has a property that its density greatly changes depending on pressure despite being a liquid phase. In addition, the high pressure hydrogen gas is in a supercritical state and has an intermediate property between a gas and a liquid. Therefore, it is a difficult question whether to treat the injection of high pressure liquid hydrogen as a gas phase phenomena or as a liquid phase phenomena. As a result of the experiment, it was found good to apply the liquid orifice equation to predict the discharge flow rate of high pressure liquid hydrogen.</p>