研究者業績

羽生 宏人

ハブ ヒロト  (Hiroto HABU)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 学際科学研究系 教授
東京大学 大学院工学系研究科 化学システム工学専攻 教授
横浜国立大学 総合学術高等研究院 リスク共生社会創造センター 客員教授
相模女子大学 客員教授
学位
博士(工学)(東京大学)

J-GLOBAL ID
200901019157833600
researchmap会員ID
5000019460

外部リンク

論文

 71
  • N. Itouyama, X. Huang, R. Mével, K. Matsuoka, J. Kasahara, H. Habu
    Shock Waves 34(2) 109-127 2024年4月5日  
  • Kotaro Matsumoto, Akihiro Iwasaki, Hiroto Habu
    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS 85(5) 46-52 2024年  
  • 勝身 俊之, 松永 浩貴, 伊東山 登, 松本 幸太郎, 塩田 謙人, 伊里 友一朗, 羽生 宏人, 三宅 淳巳
    日本燃焼学会誌 65(214) 233-238 2023年11月15日  
  • Noboru Itouyama, Asato Wada, Hiroki Matsunaga, Jiro Kasahara, Hiroto Habu
    Science and Technology of Energetic Materials 84(3-4) 33-39 2023年10月  査読有り
  • Hiroki Matsunaga, Mamoru Hayata, Hiroto Habu, Masaru Noda, Atsumi Miyake
    Journal of Evolving Space Activities 1 2023年6月  査読有り
  • Noboru Itouyama, Asato Wada, Hiroto Habu, Yoshimichi Sago
    JOURNAL OF PROPULSION AND POWER 39(3) 416-425 2023年5月  査読有り
  • Valentin Buyakofu, Ken Matsuoka, Koichi Matsuyama, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Keisuke Goto, Kazuki Ishihara, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada
    Journal of Spacecraft and Rockets 60(1) 181-189 2023年1月  
  • Keisuke Goto, Ken Matsuoka, Koichi Matsuyama, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Kazuki Ishihara, Valentin Buyakofu, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada
    Journal of Spacecraft and Rockets 60(1) 273-285 2023年1月  
    To create a new flyable detonation propulsion system, a detonation engine system (DES) that can be stowed in sounding rocket S-520-31 has been developed. This paper focused on the first flight demonstration in the space environment of a DES-integrated rotating detonation engine (RDE) using S-520-31. The flight result was compared with ground-test data to validate its performance. In the flight experiment, the stable combustion of the annulus RDE with a plug-shaped inner nozzle was observed by onboard digital and analog cameras. With a time-averaged mass flow of [Formula: see text] and an equivalence ratio of [Formula: see text], the RDE generated a time-averaged thrust of 518 N and a specific impulse of [Formula: see text], which is almost identical to the ideal value of constant pressure combustion. Due to the RDE combustion, the angular velocity increased by [Formula: see text] in total, and the time-averaged torque from the rotational component of the exhaust during 6 s of operation was [Formula: see text]. The high-frequency sampling data identified the detonation frequency during the recorded time as 20 kHz in the flight, which was confirmed by the DES ground test through high-frequency sampling data analysis and high-speed video imaging.
  • Yuichiro Ide, Yu‐ichiro Izato, Mitsuo Koshi, Atsumi Miyake, Hiroto Habu, Shinichiro Tokudome
    Propellants, Explosives, Pyrotechnics 48(2) 2022年11月28日  査読有り
  • 松岡 健, 後藤 啓介, ブヤコフ バレンティン, 松山 行一, 川﨑 央, 伊東山 登, 渡部 広吾輝, 石原 一輝, 野田 朋之, 笠原 次郎, 松尾 亜紀子, 船木 一幸, 中田 大将, 内海 政春, 羽生 宏人, 竹内 伸介, 荒川 聡, 増田 純一, 前原 健次, 中尾 達郎, 山田 和彦
    日本航空宇宙学会誌 70(11) 224-233 2022年11月5日  
    2021年7月27日早朝5:30,JAXA内之浦宇宙空間観測所からデトネーションエンジンシステムを搭載した観測ロケットS-520-31号機が打ち上げられた.高度約200kmにてメタン–酸素推進剤による回転デトネーションエンジン(RDE)の6秒間作動およびパルスデトネーションエンジン(PDE)の2Hz作動を実施した.取得されたフライトデータから,RDE作動で時間平均推力518N,比推力290±18sおよび速度増速量8.0m/sを達成した.PDE作動では1サイクル当たりの圧力時間積分値が5%以内の高精度での繰り返しインパルス生成およびロケット機軸周りのスピンレート減少が確認された.本結果は,地上燃焼試験データとよく一致し,宇宙空間でのデトネーションエンジン作動が実証された.デトネーション波の判定に用いた圧力・加速度センサの高速サンプリングデータおよびRDEプルーム撮影用のデジタルカメラ画像は,JAXA/ISASで開発された再突入データ回収システムRATSにて回収することに成功した.
  • Hiroki Matsunaga, Katsumi Katoh, Hiroto Habu, Masaru Noda, Atsumi Miyake
    Science and Technology of Energetic Materials 83(5) 132-137 2022年10月  査読有り
  • Tatsuro Nakao, Kazuhiko Yamada, Hitoshi Hamori, Takahiro Ishimaru, Shun Imai, Yasunori Nagata, Kaho Maeda, Kenji Maehara, Hiroto Habu, Yuki Akimoto, Minami Mori, Marie Mitsuno, Koshiro Hirata, Hideto Takasawa, Kojiro Suzuki
    26th AIAA Aerodynamic Decelerator Systems Technology Conference 2022年5月16日  
  • Matsumoto Kotaro, Habu Hiroto
    Science and Technology of Energetic Materials 83(1) 8-13 2022年  査読有り
    In this study, the viscosity characteristics of bimodal Al/hydroxyl-terminated polybutadiene (Al/HTPB) suspensions were experimentally investigated to improve the propulsion performance and manufacturability of low-cost solid propellants with ease of application. Several Al particles with different mean volume diameters were used to prepare the bimodal Al. The Al/HTPB suspensions behaved like a continuum in solid propellant slurries. The reason is that Al particles were sufficiently small for ammonium perchlorate particles. The suspension viscosities were measured using a rotational viscometer at 1.92 s -1. The optimum coarse fraction of Al particles in the bimodal Al/HTPB suspensions was 0.75. The viscosity of bimodal Al/HTPB suspensions was suppressed with an increase in the diameter ratio. These results were attributed to the improvement of Al packing in the suspensions. The experimental results show that the viscosity reduction by applying bimodal Al particles was more effective when the minimum void fraction was reduced. Furthermore, the performance enhancement of solid propellants was confirmed by adding the bimodal Al/HTPB. The calculation results showed that the bimodal Al/HTPB enhanced the propulsion performance of the propellant without the viscosity variation to a higher side. Moreover, the suppression of viscosity of up to 23 % could be achieved using the bimodal Al/HTPB similar to the conventional composition of solid propellants. Therefore, replacing monomodal Al particles with bimodal ones in solid propellants effectively improved the performance of the propellants.
  • Valentin Buyakofu, Ken Matsuoka, Koichi Matsuyama, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Keisuke Goto, Kazuki Ishihara, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara
    JOURNAL OF SPACECRAFT AND ROCKETS 59(3) 850-860 2021年12月  査読有り
  • Kansei TERASHIMA, Akihiro IWASAKI, Makoto R. ASAKAWA, Hiroto HABU, Soichiro YAMAGUCHI
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 19(2) 266-269 2021年  
  • Hiroki Matsunaga, Katsumi Katoh, Hiroto Habu, Masaru Noda, Atsumi Miyake
    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS 82(4) 103-108 2021年  査読有り
  • Kota WAKAMATSU, Daiki HAGIWARA, Haruka ADACHI, Kyota ASHIGAKI, Akihiro IWASAKI, Yasuyuki YAMADA, Hiroto HABU, Taro NAKAMURA
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 19(2) 205-210 2021年  査読有り
  • R. Pfaff, M. Larsen, T. Abe, H. Habu, J. Clemmons, H. Freudenreich, D. Rowland, T. Bullett, M. Y. Yamamoto, S. Watanabe, Y. Kakinami, T. Yokoyama, J. Mabie, J. Klenzing, R. Bishop, R. Walterscheid, M. Yamamoto, Y. Yamazaki, N. Murphy, V. Angelopoulos
    Geophysical Research Letters 47(15) 2020年8月16日  査読有り
  • Noboru Itouyama, Hiroki Matsunaga, Hiroto Habu
    Propellants, Explosives, Pyrotechnics 45(6) 988-996 2020年6月1日  査読有り
  • T. Ito, T. Yamamoto, T. Nakamura, H. Habu, H. Ohtsuka
    Acta Astronautica 170 206-223 2020年5月  査読有り
  • Noboru Itouyama, Yu-ichiro Izato, Atsumi Miyake, Hiroto Habu
    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS 81(2) 53-66 2020年  査読有り
  • Hirohito Ohtsuka, Naruhisa Sano, Masaru Nohara, Yasuhiro Morita, Takahiro Ito, Takayuki Yamamoto, Hiroto Habu
    Advances in the Astronautical Sciences 171 3903-3918 2020年  
  • Yu ichiro Izato, Kento Shiota, Kenta Satoh, Takashi Satoh, Yukinori Yahata, Hiroto Habu, Atsumi Miyake
    Journal of Thermal Analysis and Calorimetry 138(3) 1853-1861 2019年11月1日  査読有り
  • Kento Shiota, Yu ichiro Izato, Hiroto Habu, Atsumi Miyake
    Journal of Thermal Analysis and Calorimetry 138(4) 2615-2622 2019年11月1日  査読有り
  • J. Kasahara, K. Goto, R. Yokoo, A. Kawasaki, K. Matsuoka, A, Matsuo I. Funaki, H. Habu, D. Nakata, M. Uchiumi
    2019 International Workshop on Detonation for Propulsion 2121 2019年9月  査読有り
  • Noboru Itouyama, Hiroto Habu
    Propellants, Explosives, Pyrotechnics 44(9) 1107-1118 2019年9月1日  査読有り
  • Hiroki Matsunaga, Katsumi Katoh, Hiroto Habu, Masaru Noda, Atsumi Miyake
    Journal of Thermal Analysis and Calorimetry 135(5) 2677-2685 2019年3月15日  査読有り
  • 羽生宏人, 大塚浩仁, 岩倉定雄, 稲谷芳文
    日本航空宇宙学会誌 67(11) 369-374 2019年  筆頭著者
    <p>本解説では,超小型衛星打上げ機(SS-520 4号機および5号機)の計画立案から打上げ実験について総括した.本ロケット実験は,先進的な民生技術を実装した宇宙機器の宇宙実証実験として計画立案され,宇宙科学研究所の観測ロケットを実行基盤として活用,準備からロケット打上げまで比較的短期間で実行した.2017年1月に打上げられたSS-520 4号機は,発射後約20秒で通信系の不具合が発生したため軌道投入実験を中断した.本報では推定原因究明の経緯を中心に述べた.2018年2月に打上げたSS-520 5号機により,超小型衛星TRICOM-1R(愛称たすき)の軌道投入に成功した.5号機実験を通じて4号機の不具合原因の推定および技術対策の妥当性や超小型衛星打上げロケットとしての成立性を実証することができた.そして,計画の主たる狙いであった宇宙機器に実装した民生品が宇宙機に適用可能であることを実証した.</p>
  • Naomasa Hosomi, Kana Otake, Natsuyo Uegaki, Akihiro Iwasaki, Kotaro Matsumoto, Makto R Asakawa, Hiroto Habu, Soichiro Yamaguchi
    Transactions of Japan Society for Aeronautical and Space Sciences (JSASS), Aerospace Technology Japan vol.17, No.1, p. 14-18 2019年  査読有り
  • Hiroki Matsunaga, Katsumi Katoh, Hiroto Habu, Masaru Noda, Atsumi Miyake
    Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan 16(1) 88-92 2018年1月4日  査読有り
  • Noboru ITOUYAMA, Hiroto HABU
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 16(3) 291-298 2018年  査読有り
  • ASHIGAKI Kyota, YOSHIHAMA Shun, IWASAKI Akihiro, TAGAMI Kengo, YAMADA Yasuyuki, HABU Hiroto, NAKAMURA Taro
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 16(7) 662-667 2018年  査読有り
    <p>In recent years, because development of space technology has been increasing for the purpose of improving social infrastructure, the expansion of space transportation system based on low-cost and high-frequency rockets is important. Due to the compactness, inexpensiveness, and easy-handling properties of solid propellants used in solid-fuel rockets, numerous studies on solid propellants have been conducted. However, solid propellants are highly viscous slurries and highly explosive. As there is no device capable of continuously and safely transporting the solid propellant, the process of manufacturing the solid propellant is a batch process. We focused on the movement of human intestines that knead and transport with a small force, as part of the development process. In this paper, we developed a peristaltic pump, Mk. III, for kneading a solid propellant. The pump was comprised of a heating system, an input device for the powder and fluid, and a rapid exhaust valve. An investigation into the amount of input of the raw materials was undertaken, and the tendency of kneading at the point of introduction of the powder and highly viscous fluid was determined.</p>
  • SHIOTA Kento, IZATO Yu-ichiro, MATSUNAGA Hiroki, HABU Hiroto, MIYAKE Atsumi
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 16(1) 93-97 2018年  査読有り
    &lt;p&gt;Gel propellants have been recognized as future propulsion systems. Gel propellants are liquid fuels such as hydrazine, of which the rheological properties have been altered by the addition of gelation agents. Ammonium dinitramide (ADN) based energetic ionic-liquid propellants (EILPs) are expected to be used as replacements for hydrazine, which has high toxicity, and also for ionic liquid gel propellants (ILGPs). However, there have been few studies conducted on ADN based ILGPs. Here, ADN based ILGPs were prepared to obtain a better understanding of their thermal properties. The thermal behavior of the ADN based ILGP samples were measured using differential scanning calorimetry and the evolved gases were analyzed using thermogravimetry–differential thermal analysis with mass spectrometry. An ADN based ionic liquids (ILs) formed a gel using gelation agents of agarose and hydroxypropyl cellulose. The gas evolved from ADN based ILGPs was determined to be different from that from ADN based ILs due to reaction between the IL and the gelation agents.&lt;/p&gt;
  • Kent Shiota, Masataka Itakura, Yu-ichiro Izato, Hiroki Matsunaga, Hiroto Habu, Atsumi Miyake
    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS 79(5-6) 137-141 2018年  査読有り
  • Yu ichiro Izato, Mitsuo Koshi, Atsumi Miyake, Hiroto Habu
    Journal of Thermal Analysis and Calorimetry 127(1) 255-264 2017年1月1日  査読有り
  • Hiroki Matsunaga, Hiroto Habu, Atsumi S. Miyake
    Science and Technology of Energetic Materials 78(3-4) 75-80 2017年  査読有り
  • Hiroki Matsunaga, Hiroto Habu, Atsumi Miyake
    Science and Technology of Energetic Materials 78(3-4) 65-70 2017年  査読有り
  • 山田 泰之, 吉浜 舜, 岩崎 祥大, 芦垣 恭太, 松本 幸太郎, 羽生 宏人, 中村 太郎
    日本機械学会論文集 83(850) 16-00576-16-00576 2017年  査読有り
    <p>In recent years, the demand for rocket launching has increased due to the development of space technology. However, using inexpensive rockets is not always possible. Although the cost of solid-propellant rockets is relatively reasonable, safely manufacturing a large amount of solid propellant is difficult, and the manufacturing process is disjointed. Therefore, safe and continues manufacturing of solid propellant is necessary. On the basis of the movements of the intestinal tract, we proposed that the movements required for transport and mixing of solid propellants are possible to achieve without the application of a large shear force. The peristaltic motion enables not only the mixing but also conveying even high viscosity slurry. By mimicking these intestinal movements, we have considered and developed the peristaltic pumping by driven artificial muscle as one of the candidates for the continuous and safety mixer. In this research, the mixing completeness of the composite solid propellant slurry by the peristaltic pumping mixer was estimated. The result showed that the mixer we proposed could mix the propellant slurry. In the propellant samples, these variances were sufficiently small. An appropriate combustion state as a solid propellant was confirmed.</p>
  • IDE Yuichiro, TAKAHASHI Takuya, IWAI Keiichiro, NOZOE Katsuhiko, HABU Hiroto, TOKUDOME Shinichiro
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 14(30) Pa_89-Pa_94 2016年  査読有り
    <p>As a replacement for hydrazine, ammonium-dinitramide-based ionic liquid propellant (ADN-based ILP) has been developed by JAXA and Carlit Holdings Co., Ltd. This propellant is made by mixing three solid powers: ADN, monomethylamine nitrate, and urea. The propellant's theoretical specific impulse is 1.2 times higher than that of hydrazine, and its density is 1.5 times higher at a certain composition. Although ionic liquids were believed to be non-flammable for a long time owing to their low-volatility, recently combustible ILs have been reported. The combustion mechanism of ILs is not yet understood. The objective of this paper is to understand the combustion wave structure of ADN-based ILP. The temperature distribution of the combustion wave in a strand burner test shows a region of constant temperature. This region would indicate boiling in a gas-liquid phase. Thus, the combustion wave structure consists of liquid, gas-liquid, and gas phases. The dependence of boiling point on pressure would identify chemical substances in the gas-liquid phase. The dependence of combustion and ignition characteristics on ADN content is also discussed. </p>
  • IZATO Yu-ichiro, HABU Hiroto, MIYAKE Atsumi
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 14(30) Pa_27-Pa_30 2016年  査読有り
    &lt;p&gt;The condensed phase decomposition reactions of ADN were investigated both experimentally and theoretically. Thermogravimetric-differential thermal analysis coupled with mass spectrometry (TG-DTA-MS) was employed to generate Friedman plots for the thermal decomposition of ADN with the evolution of N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt;. The activation energy associated with the evolution of N&lt;sub&gt;2&lt;/sub&gt;O during initial decomposition was found to be 150 kJ/mol. Chemical equilibrium calculations based on the reaction N(NO&lt;sub&gt;2&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; + NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt; &lt;tt&gt;&amp;#8652&lt;/tt&gt; HN(NO&lt;sub&gt;2&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt; + NH&lt;sub&gt;3&lt;/sub&gt; demonstrated that the concentration of HN(NO&lt;sub&gt;2&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt; gradually increased with temperature, although the HN(NO&lt;sub&gt;2&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt; to N(NO&lt;sub&gt;2&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; ratio was still only approximately 3.1 &amp;times; 10&lt;sup&gt;-6&lt;/sup&gt;, even at the decomposition temperature of 130&amp;deg;C. Thus, molten ADN was found to contain primarily N(NO&lt;sub&gt;2&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt; and NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt; with only minor amounts of liquid HN(NO&lt;sub&gt;2&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt; and NH&lt;sub&gt;3&lt;/sub&gt;. The reaction ADN &amp;rarr; N&lt;sub&gt;2&lt;/sub&gt;O + NH&lt;sub&gt;4&lt;/sub&gt;NO&lt;sub&gt;3&lt;/sub&gt; was also investigated using &lt;i&gt;ab-initio&lt;/i&gt; calculations at the CBS-QB3//&amp;omega;B97XD/6-311++G(d,p) level. It was determined that four reaction pathways are possible via different transition states. The energy barrier of 161 kJ/mol obtained from these calculations agreed with the experimental value.&lt;/p&gt;
  • Seiichiro Nagayama, Katsumi Katoh, Eiko Higashi, Masahiko Hayashi, Kosuke Kumagae, Hiroto Habu, Yuji Wada, Katsuyuki Nakano, Mitsuru Arai
    PROPELLANTS EXPLOSIVES PYROTECHNICS 40(4) 544-550 2015年8月  査読有り
  • Hiroki Matsunaga, Yu-ichiro Izato, Hiroto Habu, Atsumi Miyake
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 121(1) 319-326 2015年7月  査読有り
  • Yuichiro Ide, Takuya Takahashi, Keiichiro Iwai, Katsuhiko Nozoe, Hiroto Habu, Shinichiro Tokudome
    Procedia Engineering 99 332-337 2015年  
  • Seiichiro Nagayama, Katsumi Katoh, Eiko Higashi, Katsuyuki Nakano, Kosuke Kumagae, Hiroto Habu, Yuji Wada, Mitsuru Arai
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 118(2) 1215-1219 2014年11月  査読有り
  • Seiichiro Nagayama, Katsumi Katoh, Eiko Higashi, Katsuyuki Nakano, Hiroto Habu
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 118(2) 1221-1227 2014年11月  査読有り
  • Koji Fujisato, Hiroto Habu, Keiichi Hori
    PROPELLANTS EXPLOSIVES PYROTECHNICS 39(5) 714-722 2014年10月  査読有り
  • Koji Fujisato, Hiroto Habu, Atsumi Miyake, Keiichi Hori, Alexander B. Vorozhtsov
    PROPELLANTS EXPLOSIVES PYROTECHNICS 39(4) 518-525 2014年8月  査読有り

MISC

 130

講演・口頭発表等

 241

担当経験のある科目(授業)

 2

Works(作品等)

 3

共同研究・競争的資金等の研究課題

 11

産業財産権

 22